English
Language : 

DS92LV2421_11 Datasheet, PDF (29/40 Pages) National Semiconductor (TI) – 10 to 75 MHz, 24-bit Channel Link II Serializer and Deserializer
Des — Control Signal Filter — Optional
The deserializer provides an optional Control Signal (C3, C2,
C1) filter that monitors the three control signals and eliminates
any pulses or glitches that are 1 or 2 parallel clock periods
wide. Control signals must be 3 parallel clock periods wide (in
its HIGH or LOW state, regardless of which state is active).
This is set by the CONFIG[1:0] strap option or by I2C register
control.
Des — SSCG Low Frequency Optimization (LF_Mode)
Text to come. This feature may be controlled by the external
pin or by Register.
Des — Strap Input Pins
Configuration of the device maybe done via configuration in-
put pins and the STRAP input pins, or via the Serial Control
Bus. The STRAP input pins share select parallel bus output
pins. They are used to load in configuration values during the
initial power up sequence of the device. Only a pull-up on the
pin is required when a HIGH is desired. By default the pad
has an internal pull down, and will bias Low by itself. The rec-
ommended value of the pull up is 10 kΩ to VDDIO; open (NC)
for Low, no pull-down is required (internal pull-down). If using
the Serial Control Bus, no pull ups are required.
Optional Serial Bus Control
Please see the following section on the optional Serial Bus
Control Interface.
Optional BIST Mode
Please see the following section on the chipset BIST mode
for details.
Built In Self Test (BIST)
An optional At-Speed Built In Self Test (BIST) feature sup-
ports the testing of the high-speed serial link. This is useful in
the prototype stage, equipment production, in-system test
and also for system diagnostics. In the BIST mode only a input
clock is required along with control to the Ser and Des BIS-
TEN input pins. The Ser outputs a test pattern (PRBS7) and
drives the link at speed. The Des detects the PRBS7 pattern
and monitors it for errors. A PASS output pin toggles to flag
any payloads that are received with 1 to 24 errors. Upon com-
pletion of the test, the result of the test is held on the PASS
output until reset (new BIST test or Power Down). A high on
PASS indicates NO ERRORS were detected. A Low on PASS
indicates one or more errors were detected. The duration of
the test is controlled by the pulse width applied to the Des
BISTEN pin.
Inter-operability is supported between this Channel Link II de-
vice and all Channel Link II generations (Gen 1/2/3) — see
respective datasheets for details on entering BIST mode and
control.
Sample BIST Sequence
See Figure 26 for the BIST mode flow diagram.
Step 1: Place the DS92LV2421 Ser in BIST Mode by setting
Ser BISTEN = H. For the DS92LV2421 Ser or DS99R421
Channel Link II Ser BIST Mode is enabled via the BISTEN
pin. A CLKIN is required for BIST. When the Des detects the
BIST mode pattern and command (DCA and DCB code) the
data and control signal outputs are shut off.
Step 2: Place the DS92LV2422 Des in BIST mode by setting
the BISTEN = H. The Des is now in the BIST mode and checks
the incoming serial payloads for errors. If an error in the pay-
load (1 to 24) is detected, the PASS pin will switch low for one
half of the clock period. During the BIST test, the PASS output
can be monitored and counted to determine the payload error
rate.
Step 3: To Stop the BIST mode, the Des BISTEN pin is set
Low. The Des stops checking the data and the final test result
is held on the PASS pin. If the test ran error free, the PASS
output will be High. If there was one or more errors detected,
the PASS output will be Low. The PASS output state is held
until a new BIST is run, the device is RESET, or Powered
Down. The BIST duration is user controlled by the duration of
the BISTEN signal.
Step 4: To return the link to normal operation, the Ser BISTEN
input is set Low. The Link returns to normal operation.
Figure 27 shows the waveform diagram of a typical BIST test
for two cases. Case 1 is error free, and Case 2 shows one
with multiple errors. In most cases it is difficult to generate
errors due to the robustness of the link (differential data trans-
mission etc.), thus they may be introduced by greatly extend-
ing the cable length, faulting the interconnect, reducing signal
condition enhancements (De-Emphasis, VODSEL, or Rx
Equalization).
30110143
FIGURE 26. BIST Mode Flow Diagram
BER Calculations
It is possible to calculate the approximate Bit Error Rate
(BER). The following is required:
• Clock Frequency (MHz)
• BIST Duration (seconds)
• BIST test Result (PASS)
The BER is less than or equal to one over the product of 24
times the CLK rate times the test duration. If we assume a 65
MHz clock, a 10 minute (600 second) test, and a PASS, the
BERT is ≤ 1.07 X 10E-12
The BIST mode runs a check on the data payload bits. The
LOCK pin also provides a link status. It the recovery of the C0
and C1 bits does not reconstruct the expected clock signal,
the LOCK pin will switch Low. The combination of the LOCK
and At-Speed BIST PASS pin provides a powerful tool for
system evaluation and performance monitoring.
29
www.national.com