English
Language : 

80960JA Datasheet, PDF (18/77 Pages) Intel Corporation – EMBEDDED 32-BIT MICROPROCESSOR
80960JA/JF/JD/JT 3.3 V Microprocessor
Table 3.
Pin Description — External Bus Signals (Sheet 2 of 3)
NAME
TYPE
DESCRIPTION
BE3:0
WIDTH/
HLTD1:0
D/C
W/R
DT/R
DEN
O
R(1)
H(Z)
P(1)
O
R(0)
H(Z)
P(1)
O
R(X)
H(Z)
P(Q)
O
R(0)
H(Z)
P(Q)
O
R(0)
H(Z)
P(Q)
O
R(1)
H(Z)
P(1)
BYTE ENABLES select which of up to four data bytes on the bus participate in the
current bus access. Byte enable encoding is dependent on the bus width of the
memory region accessed:
32-bit bus:
BE3 enables data on AD31:24
BE2 enables data on AD23:16
BE1 enables data on AD15:8
BE0 enables data on AD7:0
16-bit bus:
BE3 becomes Byte High Enable (enables data on AD15:8)
BE2 is not used (state is high)
BE1 becomes Address Bit 1 (A1)
BE0 becomes Byte Low Enable (enables data on AD7:0)
8-bit bus:
BE3 is not used (state is high)
BE2 is not used (state is high)
BE1 becomes Address Bit 1 (A1)
BE0 becomes Address Bit 0 (A0)
The processor asserts byte enables, byte high enable and byte low enable during Ta.
Since unaligned bus requests are split into separate bus transactions, these signals
do not toggle during a burst. They remain active through the last Td cycle.
For accesses to 8- and 16-bit memory, the processor asserts the address bits in
conjunction with A3:2 described above.
WIDTH/HALTED signals denote the physical memory attributes for a bus
transaction:
WIDTH/HLTD1 WIDTH/HLTD0
0
0
8 Bits Wide
0
1
16 Bits Wide
1
0
32 Bits Wide
1
1
Processor Halted
The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in
response to a HOLD request, regardless of prior operating state.
DATA/CODE indicates that a bus access is a data access (1) or an instruction
access (0). D/C has the same timing as W/R.
0 = instruction access
1 = data access
WRITE/READ specifies, during a Ta cycle, whether the operation is a write (1) or
read (0). It is latched on-chip and remains valid during Td cycles.
0 = read
1 = write
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the
address/data bus. It is low during Ta and Tw/Td cycles for a read; it is high during Ta
and Tw/Td cycles for a write. DT/R never changes state when DEN is asserted.
0 = receive
1 = transmit
DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted
at the start of the first data cycle in a bus access and deasserted at the end of the
last data cycle. DEN is used with DT/R to provide control for data transceivers
connected to the data bus.
0 = data cycle
1 = not data cycle
18
Advance Information Datasheet