English
Language : 

DS90UA101-Q1 Datasheet, PDF (31/42 Pages) Texas Instruments – DS90UA101-Q1 Multi-Channel Digital Audio Link
DS90UA101-Q1
www.ti.com
SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013
Table 3. BIST Pin Configuration on DS90UA102-Q1 Deserializer(1)
DS90UA102-Q1 Deserializer GPIO[3:2]
00
01
10
11
Oscillator Source
External
Internal
Internal
Internal
BIST Frequency (MHz)
SCK
~25
~50
~12.5
(1) Note: These pin settings will only be active when 0x24[3] = 1 and BIST is on.
The BIST mode provides various options for the clock source. Either external pins (GPIO3 and GPIO2 of DES)
or register 0x24 on DES can be used to configure the BIST to use SCK or various internal oscillator frequencies
as the clock source. Refer to Table 4 below for BIST register settings.
Table 4. BIST Register Configuration on DS90UA102-Q1 Deserializer(1)
DS90UA102-Q1 Deserializer 0x24[2:1]
00
01
10
11
Oscillator Source
External
Internal
Internal
Internal
BIST Frequency (MHz)
SCK
~50
~25
~12.5
(1) Note: These register settings will only be active when 0x24[3] = 0 and BIST is on.
The BIST status can be monitored real-time on the PASS pin. For every frame with error(s), the PASS pin
toggles low momentarily. If two consecutive frames have errors, PASS will toggle twice to allow counting of
frames with errors. Once the BIST is done, the PASS pin reflects the pass/fail status momentarily (pass = no
errors, fail = one or more errors). The BIST result can also be read through I2C for the number of frames that
errored. The status register retains results until it is reset by a new BIST session or a device reset. For all
practical purposes, the BIST status can be monitored from the BIST Error Count register 0x25 on the
DS90UA102-Q1 Deserializer.
Sample BIST Sequence (Refer to Figure 28)
Step 1: BIST mode is enabled via the BISTEN pin on the DS90UA102-Q1 Deserializer, or through the
Deserializer control registers. The clock source is selected through the GPIO3 and GPIO2 pins as shown in
Table 3.
Step 2: The DS90UA101-Q1 Serializer BIST start command is activated through the back channel.
Step 3: The BIST pattern is generated and sent through the serial interface to the Deserializer. Once the
Serializer and Deserializer are in the BIST mode and the Deserializer acquires LOCK, the PASS pin of the
Deserializer goes high and BIST starts checking the data stream. If an error in the payload is detected the PASS
pin will switch low momentarily. During the BIST test, the PASS output can be monitored and counted to
determine the payload error rate.
Step 4: To stop the BIST mode, the Deserializer BISTEN pin is set low and the Deserializer stops checking the
data. The final test result is not maintained on the PASS pin. To check the number of BIST errors, check the
BIST Error Count register, 0x25 on the Deserializer. The link returns to normal operation after the Deserializer
BISTEN pin is low.
Figure 29 below shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and
Case 2 shows one with multiple errors. In most cases, it is difficult to generate errors due to the robustness of
the link (differential data transmission, adaptive equalization, etc.), thus they may be introduced by greatly
extending the cable length, increasing the frequency, or by reducing signal condition enhancements (Rx
equalization).
Copyright © 2013, Texas Instruments Incorporated
Product Folder Links: DS90UA101-Q1
Submit Documentation Feedback
31