English
Language : 

TLC3544_07 Datasheet, PDF (21/42 Pages) Texas Instruments – 5-V ANALOG, 3-/5-V DIGITAL, 14-BIT, 200-KSPS, 4-/8-CHANNELS SERIAL ANALOG-TO-DIGITAL CONVERTERS WITH 0-5 V (PSEUDODIFFERENTIAL) INPUTS
TLC3544, TLC3548
5-V ANALOG, 3-/5-V DIGITAL, 14-BIT, 200-KSPS, 4-/8-CHANNELS SERIAL
ANALOG-TO-DIGITAL CONVERTERS WITH 0-5 V (PSEUDODIFFERENTIAL) INPUTS
SLAS266C – OCTOBER 2000 – REVISED MAY 2003
conversion mode (continued)
Sweep Mode (Mode 10): During each operation, all of the channels listed in the sweep sequence (D[4:3] of
the CFR register) are sampled and converted at one time according to the programmed sequence. The results
are stored in the FIFO. When the FIFO threshold is reached, an interrupt (INT) is generated, and the operation
ends. If the FIFO threshold is reached before all of the listed channels are visited, the remaining channels are
ignored. This allows the host to change the sweep sequence length. The mode 10 operation starts with the
WRITE CFR command to set the sweep sequence. The following triggers (CS, FS, or CSTART, depending on
the interface) start the samplings and conversions of the listed channels in sequence until the FIFO threshold
is hit. If CS or FS starts the sampling, the SDI data must be any one of the SELECT commands to set the
converter in the conversion state. However, this command is a dummy code. It does not change the existing
conversion sequence. After the FIFO is full, the converter waits for the FIFO READ. It does nothing before the
FIFO READ or the WRITE CFR command is issued. The host must read the FIFO completely or write the CFR.
If CSTART triggers the samplings, the host must issue an extra SELECT/CONVERSION command (select any
channel) via CS or FS after the FIFO READ or WRITE CFR. This extra period is named the arm period and is
used to set the converter into the conversion state, but does not affect the existing conversion sequence.
Besides, if FS initiates the operation and CSTART triggers the sampling and conversions, CS must not toggle
during the conversion.
Repeat Sweep Mode (Mode 11): This mode works in the same way as mode 10, except that it is not necessary
to read the FIFO before the next operation after the FIFO threshold is hit. The next SWEEP can repeat
immediately, but the contents in the FIFO are replaced by the new results. The host can read the FIFO
completely, then issue the next SWEEP or repeat the SWEEP immediately (with the existing sweep sequence)
by issuing sampling/conversion triggers (CS, FS or CSTART) or change the device setting with the WRITE CFR.
The memory effect of charge redistribution DAC exists when the mux switches from one channel to another.
This degrades the channel-to-channel isolation if the channel changes after each conversion. For example, in
mode 10 and 11, the isolation is about 70 dB for the sweep sequence 0-1-2-3-4 (refer to Figure 8). The memory
effect can be reduced by increasing the sampling time or using the sweep sequence 0-0-2-2-4-4-6-6 and
ignoring the first sample of each channel. Figure 8 shows the typical isolation vs throughput rate when applying
a sine signal (35 kHz, 3.5 Vp-p) on CH0 and dc on CH1 converting both channels alternately and measuring the
attenuation of the sine wave in CH1.
CHANNEL-TO-CHANNEL ISOLATION
vs
THROUGHPUT
100
90
80
70
60
0
50
100
150
200
Throughput – KSPS
Figure 8
• POST OFFICE BOX 655303 DALLAS, TEXAS 75265
21