English
Language : 

PIC16F676-I Datasheet, PDF (61/132 Pages) Microchip Technology – 14-Pin, Flash-Based 8-Bit CMOS Microcontrollers
PIC16F630/676
9.3.5 BROWN-OUT DETECT (BOD)
The PIC16F630/676 members have on-chip Brown-out
Detect circuitry. A Configuration bit, BODEN, can
disable (if clear/programmed) or enable (if set) the
Brown-out Detect circuitry. If VDD falls below VBOD for
greater than parameter (TBOD) in Table 12-4 (see
Section 12.0 “Electrical Specifications”), the
Brown-out situation will reset the device. This will occur
regardless of VDD slew-rate. A Reset is not guaranteed
to occur if VDD falls below VBOD for less than parameter
(TBOD).
FIGURE 9-6:
BROWN-OUT SITUATIONS
On any Reset (Power-on, Brown-out Detect,
Watchdog, etc.), the chip will remain in Reset until VDD
rises above BVDD (see Figure 9-6). The Power-up
Timer will now be invoked, if enabled, and will keep the
chip in Reset an additional 72 ms.
Note:
A Brown-out Detect does not enable the
Power-up Timer if the PWRTE bit in the
Configuration Word is set.
If VDD drops below BVDD while the Power-up Timer is
running, the chip will go back into a Brown-out Detect
and the Power-up Timer will be re-initialized. Once VDD
rises above BVDD, the Power-up Timer will execute a
72 ms Reset.
VDD
VBOD
Internal
Reset
72 ms(1)
VDD
VBOD
Internal
Reset
<72 ms
72 ms(1)
VDD
Internal
Reset
Note 1: 72 ms delay only if PWRTE bit is programmed to ‘0’.
72 ms(1)
VBOD
9.3.6 TIME-OUT SEQUENCE
On power-up, the time-out sequence is as follows: first,
PWRT time-out is invoked after POR has expired.
Then, OST is activated. The total time-out will vary
based on oscillator configuration and PWRTE bit
status. For example, in EC mode with PWRTE bit
erased (PWRT disabled), there will be no time-out at
all. Figure 9-7, Figure 9-8 and Figure 9-9 depict time-
out sequences.
Since the time-outs occur from the POR pulse, if MCLR
is kept low long enough, the time-outs will expire. Then
bringing MCLR high will begin execution immediately
(see Figure 9-8). This is useful for testing purposes or
to synchronize more than one PIC16F630/676 device
operating in parallel.
Table 9-6 shows the Reset conditions for some special
registers, while Table 9-7 shows the Reset conditions
for all the registers.
 2010 Microchip Technology Inc.
9.3.7
POWER CONTROL (PCON) STATUS
REGISTER
The power CONTROL/STATUS register, PCON
(address 8Eh) has two bits.
Bit 0 is BOD (Brown-out). BOD is unknown on Power-
on Reset. It must then be set by the user and checked
on subsequent Resets to see if BOD = 0, indicating that
a brown-out has occurred. The BOD Status bit is a
“don’t care” and is not necessarily predictable if the
brown-out circuit is disabled (by setting BODEN bit = 0
in the Configuration Word).
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on
Reset and unaffected otherwise. The user must write a
‘1’ to this bit following a Power-on Reset. On a
subsequent Reset, if POR is ‘0’, it will indicate that a
Power-on Reset must have occurred (i.e., VDD may
have gone too low).
DS40039F-page 61