English
Language : 

LTC3875_15 Datasheet, PDF (30/44 Pages) Linear Technology – Dual, 2-Phase, Synchronous Controller with Low Value DCR Sensing and Temperature Compensation
LTC3875
Applications Information
2. INTVCC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
from INTVCC to ground. The resulting dQ/dt is a cur-
rent out of INTVCC that is typically much larger than the
control circuit current. In continuous mode, IGATECHG =
f(QT + QB), where QT and QB are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTVCC power through EXTVCC from an
output-derived source will scale the VIN current required
for the driver and control circuits by a factor of (Duty
Cycle)/(Efficiency). For example, in a 20V to 5V applica-
tion, 10mA of INTVCC current results in approximately
2.5mA of VIN current. This reduces the midcurrent loss
from 10% or more (if the driver was powered directly
from VIN) to only a few percent.
3. I2R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resis-
tor (if used). In continuous mode, the average output
current flows through L, but is “chopped” between the
topside MOSFET and the synchronous MOSFET. If the
two MOSFETs have approximately the same RDS(ON),
then the resistance of one MOSFET can simply be
summed with the resistances of L to obtain I2R losses.
Efficiency varies as the inverse square of VOUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become significant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) VIN2 IO(MAX) CRSS f
Other “hidden” losses such as copper trace and internal
battery resistances can account for an additional efficiency
degradation in portable systems. It is very important to
include these “system” level losses during the design
phase. The internal battery and fuse resistance losses can
be minimized by making sure that CIN has adequate charge
storage and very low ESR at the switching frequency. The
LTC3875 2-phase architecture typically halves this input
capacitance requirement over competing solutions. Other
losses including Schottky conduction losses during dead
time and inductor core losses generally account for less
than 2% total additional loss.
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, VOUT shifts by an
amount equal to ∆ILOAD (ESR), where ESR is the effective
series resistance of COUT. ∆ILOAD also begins to charge or
discharge COUT generating the feedback error signal that
forces the regulator to adapt to the current change and
return VOUT to its steady-state value. During this recovery
time VOUT can be monitored for excessive overshoot or
ringing, which would indicate a stability problem. The
availability of the ITH pin not only allows optimization of
control loop behavior but also provides a DC-coupled and
AC-filtered closed-loop response test point. The DC step,
rise time and settling at this test point truly reflects the
closed loop response. Assuming a predominantly second
order system, phase margin and/or damping factor can be
estimated using the percentage of overshoot seen at this
pin. The bandwidth can also be estimated by examining the
rise time at the pin. The ITH external components shown
in the Typical Application circuit will provide an adequate
starting point for most applications. The ITH series RC-CC
filter sets the dominant pole-zero loop compensation.
The values can be modified slightly (from 0.5 to 2 times
their suggested values) to optimize transient response
once the final PC layout is done and the particular output
capacitor type and value have been determined. The output
capacitors need to be selected because the various types
and values determine the loop gain and phase. An output
current pulse of 20% to 80% of full-load current having a
rise time of 1µs to 10µs will produce output voltage and
ITH pin waveforms that will give a sense of the overall
loop stability without breaking the feedback loop. Placing
3875fa
30
For more information www.linear.com/LTC3875