English
Language : 

LTC3875_15 Datasheet, PDF (22/44 Pages) Linear Technology – Dual, 2-Phase, Synchronous Controller with Low Value DCR Sensing and Temperature Compensation
LTC3875
Applications Information
A reasonable starting point is to choose a ripple current
that is about 40% of IOUT(MAX). Note that the largest ripple
current occurs at the highest input voltage. To guarantee
that ripple current does not exceed a specified maximum,
the inductor should be chosen according to:
L≥
VIN
fOSC
– VOUT
•IRIPPLE
•
VOUT
VIN
Inductor Core Selection
Once the inductance value is determined, the type of in-
ductor must be selected. Core loss is independent of core
size for a fixed inductor value, but it is very dependent on
inductance selected. As inductance increases, core losses
go down. Unfortunately, increased inductance requires
more turns of wire and therefore copper losses will in-
crease. Ferrite designs have very low core loss and are
preferred at high switching frequencies, so design goals
can concentrate on copper loss and preventing satura-
tion. Ferrite core material saturates “hard,” which means
that inductance collapses abruptly when the peak design
current is exceeded. This results in an abrupt increase in
inductor ripple current and consequent output voltage
ripple. Do not allow the core to saturate!
Power MOSFET and Schottky Diode
(Optional) Selection
At least two external power MOSFETs need to be selected:
One N-channel MOSFET for the top (main) switch and one
or more N-channel MOSFET(s) for the bottom (synchro-
nous) switch. The number, type and on-resistance of all
MOSFETs selected take into account the voltage step-down
ratio as well as the actual position (main or synchronous)
in which the MOSFET will be used. A much smaller and
much lower input capacitance MOSFET should be used
for the top MOSFET in applications that have an output
voltage that is less than one-third of the input voltage. In
applications where VIN >> VOUT , the top MOSFETs’ on-
resistance is normally less important for overall efficiency
than its input capacitance at operating frequencies above
300kHz. MOSFET manufacturers have designed special
purpose devices that provide reasonably low on-resistance
with significantly reduced input capacitance for the main
switch application in switching regulators.
The peak-to-peak MOSFET gate drive levels are set by the
internal regulator voltage, VINTVCC, requiring the use of
logic-level threshold MOSFETs in most applications. Pay
close attention to the BVDSS specification for the MOSFETs
as well; many of the logic-level MOSFETs are limited to
30V or less. Selection criteria for the power MOSFETs
include the on-resistance, RDS(ON), input capacitance,
input voltage and maximum output current. MOSFET input
capacitance is a combination of several components but
can be taken from the typical gate charge curve included
on most data sheets (Figure 8). The curve is generated by
forcing a constant input current into the gate of a common
source, current source loaded stage and then plotting the
gate voltage versus time. The initial slope is the effect of the
gate-to-source and the gate-to-drain capacitance. The flat
portion of the curve is the result of the Miller multiplication
effect of the drain-to-gate capacitance as the drain drops the
voltage across the current source load. The upper sloping
line is due to the drain-to-gate accumulation capacitance
and the gate-to-source capacitance. The Miller charge (the
increase in coulombs on the horizontal axis from a to b
while the curve is flat) is specified for a given VDS drain
voltage, but can be adjusted for different VDS voltages by
multiplying the ratio of the application VDS to the curve
specified VDS values. A way to estimate the CMILLER term
is to take the change in gate charge from points a and b
on a manufacturer’s data sheet and divide by the stated
VDS voltage specified. CMILLER is the most important
selection criteria for determining the transition loss term
in the top MOSFET but is not directly specified on MOSFET
data sheets. CRSS and COS are specified sometimes but
definitions of these parameters are not included. When the
controller is operating in continuous mode the duty cycles
for the top and bottom MOSFETs are given by:
VIN
MILLER EFFECT
VGS
a
b
QIN
CMILLER = (QB – QA)/VDS
V
+
VGS
–
+
– VDS
3875 F08
Figure 8. Gate Charge Characteristic
3875fa
22
For more information www.linear.com/LTC3875