English
Language : 

LTC3869-2_15 Datasheet, PDF (25/42 Pages) Linear Technology – Dual, 2-Phase Synchronous Step-Down DC/DC Controllers
LTC3869/LTC3869-2
Applications Information
If the duty cycle falls below what can be accommodated
by the minimum on-time, the controller will begin to skip
cycles. The output voltage will continue to be regulated,
but the ripple voltage and current will increase.
The minimum on-time for the LTC3869 is approximately
90ns, with reasonably good PCB layout, minimum 40%
inductor current ripple and at least 10mV – 15mV ripple
on the current sense signal. The minimum on-time can be
affected by PCB switching noise in the voltage and current
loop. As the peak sense voltage decreases the minimum
on-time gradually increases to 130ns. This is of particular
concern in forced continuous applications with low ripple
current at light loads. If the duty cycle drops below the
minimum on-time limit in this situation, a significant
amount of cycle skipping can occur with correspondingly
larger current and voltage ripple.
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3869 circuits: 1) IC VIN current, 2) INTVCC
regulator current, 3) I2R losses, 4) Topside MOSFET
transition losses.
1. The VIN current is the DC supply current given in
the Electrical Characteristics table, which excludes
MOSFET driver and control currents. VIN current typi-
cally results in a small (<0.1%) loss.
2. INTVCC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
from INTVCC to ground. The resulting dQ/dt is a cur-
rent out of INTVCC that is typically much larger than the
control circuit current. In continuous mode, IGATECHG
= f(QT + QB), where QT and QB are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTVCC power through EXTVCC from an
output-derived source will scale the VIN current required
for the driver and control circuits by a factor of (Duty
Cycle)/(Efficiency). For example, in a 20V to 5V applica-
tion, 10mA of INTVCC current results in approximately
2.5mA of VIN current. This reduces the mid-current loss
from 10% or more (if the driver was powered directly
from VIN) to only a few percent.
3. I2R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resistor.
In continuous mode, the average output current flows
through L and RSENSE, but is “chopped” between the
topside MOSFET and the synchronous MOSFET. If the
two MOSFETs have approximately the same RDS(ON),
then the resistance of one MOSFET can simply be
summed with the resistances of L and RSENSE to ob-
tain I2R losses. For example, if each RDS(ON) = 10mΩ,
RL = 10mΩ, RSENSE = 5mΩ, then the total resistance
is 25mΩ. This results in losses ranging from 2% to
8% as the output current increases from 3A to 15A for
a 5V output, or a 3% to 12% loss for a 3.3V output.
Efficiency varies as the inverse square of VOUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become significant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) VIN2 IO(MAX) CRSS ƒ
Other “hidden” losses such as copper trace and internal
battery resistances can account for an additional 5% to
10% efficiency degradation in portable systems. It is very
important to include these “system” level losses during
the design phase. The internal battery and fuse resistance
For more information www.linear.com/LTC3869
38692fa
25