English
Language : 

LTC3728LCGN-PBF Datasheet, PDF (20/38 Pages) Linear Technology – Dual, 550kHz, 2-Phase Synchronous Regulators
LTC3728L/LTC3728LX
Applications Information
Panasonic SP, NEC Neocap, Cornell Dubilier ESRE and
Sprague 595D series. Consult manufacturers for other
specific recommendations.
INTVCC Regulator
An internal P‑channel low dropout regulator produces
5V at the INTVCC pin from the VIN supply pin. INTVCC
powers the drivers and internal circuitry within the IC.
The INTVCC pin regulator can supply a peak current of
50mA and must be bypassed to ground with a minimum
of 4.7µF tantalum, 10µF special polymer, or low ESR type
electrolytic capacitor. A 1µF ceramic capacitor placed di-
rectly adjacent to the INTVCC and PGND IC pins is highly
recommended. Good bypassing is necessary to supply
the high transient currents required by the MOSFET gate
drivers and to prevent interaction between channels.
Higher input voltage applications in which large MOSFETs
are being driven at high frequencies may cause the maxi-
mum junction temperature rating for the IC to be exceeded.
The system supply current is normally dominated by the
gate charge current. Additional external loading of the
INTVCC and 3.3V linear regulators also needs to be taken
into account for the power dissipation calculations. The
total INTVCC current can be supplied by either the 5V in-
ternal linear regulator or by the EXTVCC input pin. When
the voltage applied to the EXTVCC pin is less than 4.7V, all
of the INTVCC current is supplied by the internal 5V linear
regulator. Power dissipation for the IC in this case is high-
est: (VIN)(IINTVCC), and overall efficiency is lowered. The
gate charge current is dependent on operating frequency
as discussed in the Efficiency Considerations section.
The junction temperature can be estimated by using the
equations given in Note 2 of the Electrical Characteristics.
For example, the IC VIN current is thermally limited to less
than 67mA from a 24V supply when not using the EXTVCC
pin as follows:
TJ = 70°C + (67mA)(24V)(34°C/W) = 125°C
Use of the EXTVCC input pin reduces the junction tem-
perature to:
TJ = 70°C + (67mA)(5V)(34°C/W) = 81°C
The absolute maximum rating for the INTVCC pin is 40mA.
Dissipation should be calculated to also include any added
20
current drawn from the internal 3.3V linear regulator. To
prevent maximum junction temperature from being ex-
ceeded, the input supply current must be checked operating
in continuous mode at maximum VIN.
EXTVCC Connection
The IC contains an internal P‑channel MOSFET switch
connected between the EXTVCC and INTVCC pins. When
the voltage applied to EXTVCC rises above 4.7V, the internal
regulator is turned off and the switch closes, connecting
the EXTVCC pin to the INTVCC pin, thereby supplying internal
power. The switch remains closed as long as the voltage
applied to EXTVCC remains above 4.5V. This allows the
MOSFET driver and control power to be derived from the
output during normal operation (4.7V < VOUT < 7V) and
from the internal regulator when the output is out of regu-
lation (start-up, short-circuit). If more current is required
through the EXTVCC switch than is specified, an external
Schottky diode can be added between the EXTVCC and
INTVCC pins. Do not apply greater than 7V to the EXTVCC
pin and ensure that EXTVCC < VIN.
Significant efficiency gains can be realized by powering
INTVCC from the output, since the VIN current resulting
from the driver and control currents will be scaled by a
factor of (Duty Cycle)/(Efficiency). For 5V regulators this
supply means connecting the EXTVCC pin directly to VOUT .
However, for 3.3V and other lower voltage regulators,
additional circuitry is required to derive INTVCC power
from the output.
The following list summarizes the four possible connec-
tions for EXTVCC:
1. EXTVCC Left Open (or Grounded). This will cause
INTVCC to be powered from the internal 5V regulator
resulting in an efficiency penalty of up to 10% at high
input voltages.
2. EXTVCC Connected Directly to VOUT . This is the normal
connection for a 5V regulator and provides the highest
efficiency.
3. EXTVCC Connected to an External Supply. If an external
supply is available in the 5V to 7V range, it may be used
to power EXTVCC providing it is compatible with the
MOSFET gate drive requirements.
3728lxff