English
Language : 

IC-MU150 Datasheet, PDF (42/64 Pages) IC-Haus GmbH – MAGNETIC OFF-AXIS POSITION ENCODER - POLE WIDTH 1.50MM
iC-MU150 MAGNETIC OFF-AXIS
POSITION ENCODER - POLE WIDTH 1.50MM
Rev B1, Page 42/64
Construction of a Multiturn system with two
iC-MU150
A 3 track nonius system can be build using two
iC-MU150. The singleturn iC-MU150 (1) can be config-
ured to interpret 3, 4, 5, or 6 bits of the read multiturn
data as singleturn data (ST) (see Table 63). The output
through the incremental interface, the UVW interface
and the serial interface in MODE_ST = 0x1 (FlexCount)
of iC-MU150 (1) is then absolute with this additional
information.
The construction of such a system is shown as an ex-
ample in Figure 42 and the configuration in Table 69.
iC-MU150
Multiturn
(2)
iC-MU150
Singleturn
(1)
nonius 1023
master 1024
segment 992
Master
MPC
(2) (1)
0x7 0x4
0x8 0x4
0x9 0x5
0xA 0x5
0xB 0x6
0xC 0x6
Periods/revolution
Master Segm. Nonius
128 120 127
256 240 255
512 496 511
1024 992 1023
2048 2016 2047
4096 4032 4095
ST Periods [Bit]
from MT(2) from ST(1)
3
4
4
4
4
5
5
5
5
6
6
6
Table 70: Settings for a 3-track nonius system using 2
iC-MU150
Permissible Max. phase deviation
Periods/revolution
[given in degree per signal period of 360°]
Master Segm. Nonius Master ↔ Segm. Master ↔ Non.*)
(1)
(2)
128 120 127 +/-9.84°
+/-19.68°
256 240 255 +/-9.84°
+/-9.84°
512 496 511 +/-4.92°
+/-9.84°
1024 992 1023 +/-4.92°
+/-4.92°
2048 2016 2047 +/-2.46°
+/-4.92°
4096 4032 4095 +/-2.46°
+/-2.46°
Note *) with SBL_MT=0x3
Table 71: Tolerable phase deviation for the master ver-
sus the nonius or segment track of a 3-track
nonius system (with reference to 360°, elec-
trical)
SL
MA
Figure 43 shows the principle of the synchronization of
the data from iC-MU150 (2) to iC-MU150 (1).
Figure 42: 3-track nonius with 2 iC-MU150
iC-MU150 (1): singleturn
Parameter Value
MPC
0x5
MODE_MT 0x5
SBL_MT 0x3
iC-MU150 (2): multiturn
Parameter Value
MPC
0xA
MODE_MT 0x0
MODE_ST 0x0
OUT_MSB 0xA
OUT_LSB 0xF
Description
5-bit ST periods
5-bit ST periods via multiturn
4-bit synchronization of read multiturn
data
Description
10-bit periods
no additional multiturn data
output of internal absolute data
MSB output configuration
9-bit output data while having 10-bit
periods
LSB output configuration
9-bit output data while having 10-bit
periods
Table 69: Configuration example for the 3-track nonius
system of Fig.42
Table 70 shows the possible settings for a 3-track no-
nius systems with 2 iC-MU150 and the resulting pe-
riods/revolution of the tracks. The maximum phase
deviation of the tracks is summarized in Table 71.
Bits of Multiturn MU150 (2)
jm - jn
SYNC BITS
jm - js
CORRECTION
SYNC BITS
jm
CORRECTION
MPC (2)
MPC (1)
12 Bit
jm
CNT_PERIOD
+
jabsolut
MSB
INTERNAL
LSB W ORD
Figure 43: Principle of the synchronization of a
3-track nonius system using 2 iC-MU150
without further multiturn data
To facilitate the initial configuration of an iC-MU150 as
a SSI multiturn device the command SWITCH can be
used (see page 56). The singleturn iC-MU150 (1) in
Figure 42 has to enable the direct communication to
the multiturn sensor by setting GET_MT to 1. The con-
figuration of iC-MU150 (2) can take place using the
BiSS protocol. After the configuration of the external
multiturn MODEA_NEW and RPL_NEW are used to
set the target configuration of MODEA and RPL. After