English
Language : 

DS90CR216A Datasheet, PDF (23/34 Pages) Texas Instruments – 3.3-V Rising Edge Data Strobe LVDS Receiver
www.ti.com
DS90CR216A, DS90CR286A, DS90CR286A-Q1
SNLS043H – MAY 2000 – REVISED JANUARY 2016
9 Power Supply Recommendations
Proper power supply decoupling is important to ensure a stable power supply with minimal power supply noise.
Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a
conservative approach three parallel-connected decoupling capacitors (Multi-Layered Ceramic type in surface
mount form factor) between each VCC and the ground plane(s) are recommended. The three capacitor values are
0.1 μF, 0.01 μF and 0.001 μF. The preferred capacitor size is 0402. An example is shown in Figure 26. The
designer should employ wide traces for power and ground and ensure each capacitor has its own via to the
ground plane. If board space is limiting the number of bypass capacitors, the PLL VCC should receive the most
filtering/bypassing. Next would be the LVDS VCC pins and finally the logic VCC pins.
Figure 26. Recommended Bypass Capacitor Decoupling Configuration
10 Layout
10.1 Layout Guidelines
As with any high speed design, board designers must maximize signal integrity by limiting reflections and
crosstalk that can adversely affect high frequency and EMI performance. The following practices are
recommended layout guidelines to optimize device performance.
• Ensure that differential pair traces are always closely coupled to eliminate noise interference from other
signals and take full advantage of the common mode noise canceling effect of the differential signals.
• Maintain equal length on signal traces for a given differential pair.
• Limit impedance discontinuities by reducing the number of vias on signal traces.
• Eliminate any 90º angles on traces and use 45º bends instead.
• If a via must exist on one signal polarity, mirror the via implementation on the other polarity of the differential
pair.
• Match the differential impedance of the selected physical media. This impedance should also match the value
of the termination resistor that is connected across the differential pair at the receiver's input.
• When possible, use short traces for LVDS inputs.
10.2 Layout Examples
The following images show an example layout of the DS90CR286A.Traces in blue correspond to the top layer
and the traces in green correspond to the bottom layer. Note that differential pair inputs to the DS90CR286A are
tightly coupled and close to the connector pins. In addition, observe that the power supply decoupling capacitors
are placed as close as possible to the power supply pins with through vias in order to minimize inductance. The
principles illustrated in this layout can also be applied to the 48-pin DS90CR216A.
Copyright © 2000–2016, Texas Instruments Incorporated
Submit Documentation Feedback
23
Product Folder Links: DS90CR216A DS90CR286A DS90CR286A-Q1