English
Language : 

TDA3MV_17 Datasheet, PDF (181/256 Pages) Texas Instruments – SoC for Advanced Driver Assistance Systems (ADAS) 15mm Package (ABF) Silicon Revision 2.0
www.ti.com
TDA3MV, TDA3MA
TDA3LX, TDA3LA
SPRS964C – JUNE 2016 – REVISED JULY 2017
For the conductor layers, the correct conductivity needs to be programmed into the simulation tool. This is
followed by pin-grouping of the power and ground nets, and applying appropriate voltage/current sources.
The current and voltage information can be obtained from the power and voltage specifications of the
device under different operating conditions / Use Cases.
Grouped Power/Ground
pins to create 1 equivalent
resistive branch
Sources
Multiport net
Branch
Port/Pin
Sources
Sinks
Sinks
SPRS91v_PCB_PDN_01
Figure 8-5. Pin-grouping concept: Lumped and Distributed Methodologies
8.2.4 Step 4: Frequency Analysis
Delivering low noise voltage sources are very important to allowing a system to operate at the lowest
possible Operational Performance Point (OPP) for any one Use Case. An OPP is a combination of the
supply voltage level and clocking rate for key internal processor domains. A SCH and PCB designed to
provide low noise voltage supplies will then enable the processor to enter optimal OPPs for each Use
Case that in turn will minimize power dissipation and junction temperatures on-die. Therefore, it is a good
engineering practice to perform a Frequency Analysis over the key power domains.
Frequency analysis and design methodology results in a PDN design that minimizes transient noise
voltages at the processor’s input power balls. This allows the processor’s internal transistors to operate
near the minimum specified operating supply voltage levels. To accomplish this one must evaluate how a
voltage supply will change due to impedance variations over frequency. This analysis will focus on the
decoupling capacitor network (VDD_xxx and VSS/Gnd rails) at the load. Sufficient capacitance with a
distribution of self-resonant points will provide for an overall lower impedance vs frequency response for
each power domain.
Decoupling components that are distant from their load’s input power are susceptible to encountering
spreading loop inductance from the PCB design. Early analysis of each key power domain’s frequency
response helps to determine basic decoupling capacitor placement, optimal footprint, layer assignment,
and types needed for minimizing supply voltage noise/fluctuations due to switching and load current
transients.
NOTE
Evaluation of loop inductance values for decoupling capacitors placed ~300mils closer to the
load’s input power balls has shown an 18% reduction in loop inductance due to reduced
distance.
• Decoupling capacitors must be carefully placed in order to minimize loop inductance impact on supply
voltage transients. A real capacitor has characteristics not only of capacitance but also inductance and
resistance.
Figure 8-6 shows the parasitic model of a real capacitor. A real capacitor must be treated as an RLC
circuit with effective series resistance (ESR) and effective series inductance (ESL).
C
ESL
ESR
SPRS91v_PCB_FREQ_01
Figure 8-6. Characteristics of a Real Capacitor With ESL and ESR
The magnitude of the impedance of this series model is given as:
Copyright © 2016–2017, Texas Instruments Incorporated
Applications, Implementation, and Layout 181
Submit Documentation Feedback
Product Folder Links: TDA3MV TDA3MA TDA3LX TDA3LA