English
Language : 

DS90CR285MTDX Datasheet, PDF (17/25 Pages) Texas Instruments – DS90CR285/DS90CR286 +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz
www.ti.com
DS90CR285, DS90CR286
SNLS130C – MARCH 1999 – REVISED MARCH 2013
Figure 24. CHANNEL LINK
Decoupling Configuration
CLOCK JITTER
The CHANNEL LINK devices employ a PLL to generate and recover the clock transmitted across the LVDS
interface. The width of each bit in the serialized LVDS data stream is one-seventh the clock period. For example,
a 66 MHz clock has a period of 15 ns which results in a data bit width of 2.16 ns. Differential skew (Δt within one
differential pair), interconnect skew (Δt of one differential pair to another) and clock jitter will all reduce the
available window for sampling the LVDS serial data streams. Care must be taken to ensure that the clock input
to the transmitter be a clean low noise signal. Individual bypassing of each VCC to ground will minimize the noise
passed on to the PLL, thus creating a low jitter LVDS clock. These measures provide more margin for channel-
to-channel skew and interconnect skew as a part of the overall jitter/skew budget.
COMMON MODE vs. DIFFERENTIAL MODE NOISE MARGIN
The typical signal swing for LVDS is 300 mV centered at +1.2V. The CHANNEL LINK receiver supports a 100
mV threshold therefore providing approximately 200 mV of differential noise margin. Common mode protection is
of more importance to the system's operation due to the differential data transmission. LVDS supports an input
voltage range of Ground to +2.4V. This allows for a ±1.0V shifting of the center point due to ground potential
differences and common mode noise.
POWER SEQUENCING AND POWERDOWN MODE
Outputs of the CNANNEL LINK transmitter remain in TRI-STATE until the power supply reaches 2V. Clock and
data outputs will begin to toggle 10 ms after VCC has reached 3V and the Powerdown pin is above 1.5V. Either
device may be placed into a powerdown mode at any time by asserting the Powerdown pin (active low). Total
power dissipation for each device will decrease to 5 μW (typical).
The CHANNEL LINK chipset is designed to protect itself from accidental loss of power to either the transmitter or
receiver. If power to the transmit board is lost, the receiver clocks (input and output) stop. The data outputs
(RxOUT) retain the states they were in when the clocks stopped. When the receiver board loses power, the
receiver inputs are shorted to V CC through an internal diode. Current is limited (5 mA per input) by the fixed
current mode drivers, thus avoiding the potential for latchup when powering the device.
Copyright © 1999–2013, Texas Instruments Incorporated
Submit Documentation Feedback
17
Product Folder Links: DS90CR285 DS90CR286