English
Language : 

SAA4992H Datasheet, PDF (19/36 Pages) NXP Semiconductors – Field and line rate converter with noise reduction
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
NAME
Control2
QQcurr
QQprev
FldStat
FieldWeYUV
OddFM1
SwapMpr
VecOffs
SNERT
ADDRESS
HEX
READ/
WRITE(1)
7
6
5
4
3
2
1
0
DESCRIPTION(2)
027
write; F
X Quincunx phase of current field (in TPM) (phase0 or phase1); this
needs to toggle each time a new field comes from FM1. In phase0 the
estimator operates on a checker-board pattern that starts with the left
upper block; in phase1 the other blocks are estimated.
X quincunx phase of previous field (in TPM) (phase0 or phase1); this is
the value of QQcur during the last estimate written into the temporal
prediction memory
X
Field status (same input field or new input field); reflects whether
the output of FM1 is a new or a repeated field. This bit will toggle field
by field in field doubling mode and is continuously HIGH in progressive
output mode.
X
enable writing FM2 and FM3 for both luminance and chrominance
(recirculation of data for luminance alone can be controlled with
OrigFmEnY and IntpFmEnY in Control3) (off or on)
X
odd input field (even or odd), this is to be set equal to the detected
field interlace for the field that comes out of FM1
X
Swap multi port RAMs (normal or swap); this bit needs to be set to
get real frame data at the temporal position from FM1. If swapped, the
current field (FM1) will be stored in the right line memory tree, while
the original lines from the stored frame (FM2/3) are stored in the left
memory tree. Should be set only in film mode if FM3 is present;
EmbraceOn must be set as well.
XX
Set vertical vector offset (0, +1, − or −1) frame lines; vertical offset of
the right line memory tree with respect to the left line memory tree.
A higher offset value means: on the right memory tree access to less
delayed video lines is taken; in interlaced video operation, the vertical
offset will be −1 with an odd field on the left side and +1 with an even
field on the left. With non-interlaced input, vertical offset should be
constantly 0. In film mode, vertical offset is dynamically switched
between +1, 0 and −1.