English
Language : 

PYTHON25K Datasheet, PDF (21/87 Pages) ON Semiconductor – PYTHON 25K/16K/12K/10K Global Shutter CMOS Image Sensors
NOIP1SN025KA, NOIP1SN016KA, NOIP1SN012KA, NOIP1SN010KA
Sensor Configuration
This device contains multiple configuration registers.
Some of these registers can only be configured while the
sensor is not acquiring images (while register 192[0] = 0),
while others can be configured while the sensor is acquiring
images. For the latter category of registers, it is possible to
distinguish the register set that can cause corrupted images
(limited number of images containing visible artifacts) from
the set of registers that are not causing corrupted images.
These three categories are described here.
Static Readout Parameters
Some registers are only modified when the sensor is not
acquiring images. Reconfiguration of these registers while
images are acquired can cause corrupted frames or even
interrupt the image acquisition. Therefore, it is
recommended to modify these static configurations while
the sequencer is disabled (register 192[0] = 0). The registers
are shown in Table 14. Table 14 should not be reconfigured
during image acquisition. A specific configuration sequence
applies for these registers. Refer to the operation flow and
startup description.
Table 14. STATIC READOUT PARAMETERS
Group
Addresses
Description
Clock generator
32
Configure according to recommendation
Image core
40
Configure according to recommendation
AFE
48
Configure according to recommendation
Bias
64–71
Configure according to recommendation
LVDS
112
Configure according to recommendation
Sequencer mode selection
192
• triggered_mode
• slave_mode
All reserved registers
Keep reserved registers to their default state, unless otherwise described in the
recommendation
Dynamic Configuration Potentially Causing Image
Artifacts
The category of registers as shown in Table 15 consists of
configurations that do not interrupt the image acquisition
process, but may lead to one or more corrupted images
during and after the reconfiguration. A corrupted image is an
image containing visible artifacts. A typical example of a
corrupted image is an image which is not uniformly exposed
The effect is transient in nature and the new configuration
is applied after the transient effect.
Table 15. DYNAMIC CONFIGURATION POTENTIALLY CAUSING IMAGE ARTIFACTS
Group
Addresses
Description
Black level configuration
128–129
197[12:8]
Reconfiguration of these registers may have an impact on the black-level calibration
algorithm. The effect is a transient number of images with incorrect black level
compensation.
Sync codes
129[13]
116–126
Incorrect sync codes may be generated during the frame in which these registers
are modified.
Datablock test configurations
144–150
Modification of these registers may generate incorrect test patterns during
a transient frame.
Dynamic Readout Parameters
It is possible to reconfigure the sensor while it is acquiring
images. Frame-related parameters are internally
resynchronized to frame boundaries, such that the modified
parameter does not affect a frame that has already started.
However, there can be restrictions to some registers as
shown in Table 16.
Some reconfiguration may lead to one frame being
blanked. This happens when the modification requires more
than one frame to settle. The image is blanked out and
training patterns are transmitted on the data and sync
channels.
www.onsemi.com
21