English
Language : 

DRQ-12-50-L48 Datasheet, PDF (22/26 Pages) Murata Power Solutions Inc. – 600W Digital Fully Regulated Intermediate DC-DC Bus Converter
DRQ-12/50-L48 Series
600W Digital Fully Regulated
Intermediate DC-DC Bus Converter
Figure 3. Load Sharing Block Diagram
Input Under-Voltage Shutdown and Start-Up Threshold
Converters will not begin to regulate properly until the rising input voltage
exceeds and remains at the Start-Up Threshold Voltage (see Specifications).
Once operating, converters will not turn off until the input voltage drops below
the Under-Voltage Shutdown Limit. Subsequent restart will not occur until the
input voltage rises again above the Start-Up Threshold. This built-in hysteresis
prevents any unstable on/off operation at a single input voltage. The over/
under-voltage fault level and fault response and hysterisis can be configured
via the PMBus interface.
Start-Up Time
Start-Up Time (see Specifications) is the time interval between the point when
the rising input voltage crosses the Start-Up Threshold and the output voltage
enters and remains within its specified accuracy band.
These converters include a soft start circuit to control Vout ramp time,
thereby limiting the input inrush current.
The On/Off Remote Control interval from On command to Vout (final ±5%)
assumes that the converter already has its input voltage stabilized above the
Start-Up Threshold before the On command. The interval is measured from the
On command until the output enters and remains within its specified accuracy
band.
Recommended Input Filtering
The user must assure that the input source has low AC impedance to provide
dynamic stability and that the input supply has little or no inductive content,
including long distributed wiring to a remote power supply. The converter will
operate with no additional external capacitance if these conditions are met.
For best performance, we recommend installing a low-ESR capacitor im-
mediately adjacent to the converter’s input terminals. The capacitor should be
a ceramic type such as the Murata GRM32 series or a polymer type. More input
bulk capacitance may be added in parallel (either electrolytic or tantalum) if
needed.
Recommended Output Filtering
The converter will achieve its rated output ripple and noise with no additional
external capacitor. However, the user may install more external output capaci-
tance to reduce the ripple even further or for improved dynamic response.
Again, use low-ESR ceramic (Murata GRM32 series) or polymer capacitors.
Mount these close to the converter. Measure the output ripple under your load
conditions.
Use only as much capacitance as required to achieve your ripple and noise
objectives. Excessive capacitance can make step load recovery sluggish or
possibly introduce instability. Do not exceed the maximum rated output capaci-
tance listed in the specifications.
Input Ripple Current and Output Noise
All models in this converter series are tested and specified for input reflected
ripple current and output noise using designated external input/output com-
ponents, circuits and layout as shown in the figures below. The Cbus and Lbus
components simulate a typical DC voltage bus.
Minimum Output Loading Requirements
All models regulate within specification and are stable under no load to full
load conditions.
www.murata-ps.com/support
MDC_DRQ-12/50-L48NK.B02 Page 22 of 26