English
Language : 

MAX1544 Datasheet, PDF (34/42 Pages) Maxim Integrated Products – Dual-Phase, Quick-PWM Controller for AMD Hammer CPU Core Power Supplies
Dual-Phase, Quick-PWM Controller for
AMD Hammer CPU Core Power Supplies
Power MOSFET Selection
Most of the following MOSFET guidelines focus on the
challenge of obtaining high load-current capability
when using high-voltage (>20V) AC adapters. Low-cur-
rent applications usually require less attention.
The high-side MOSFET (NH) must be able to dissipate
the resistive losses plus the switching losses at both
VIN(MIN) and VIN(MAX). Calculate both of these sums.
Ideally, the losses at VIN(MIN) should be roughly equal to
losses at VIN(MAX), with lower losses in between. If the
losses at VIN(MIN) are significantly higher than the losses
at VIN(MAX), consider increasing the size of NH (reducing
RDS(ON) but with higher CGATE). Conversely, if the losses
at VIN(MAX) are significantly higher than the losses at
VIN(MIN), consider reducing the size of NH (increasing
RDS(ON) to lower CGATE). If VIN does not vary over a wide
range, the minimum power dissipation occurs where the
resistive losses equal the switching losses.
Choose a low-side MOSFET that has the lowest possi-
ble on-resistance (RDS(ON)), comes in a moderate-
sized package (i.e., one or two SO-8s, DPAK, or
D2PAK), and is reasonably priced. Ensure that the DL
gate driver can supply sufficient current to support the
gate charge and the current injected into the parasitic
gate-to-drain capacitor caused by the high-side MOS-
FET turning on; otherwise, cross-conduction problems
can occur (see the MOSFET Gate Driver section).
MOSFET Power Dissipation
Worst-case conduction losses occur at the duty factor
extremes. For the high-side MOSFET (NH), the worst-
case power dissipation due to resistance occurs at the
minimum input voltage:
PD (NH RESISTIVE)
=


VOUT
VIN





ILOAD
η TOTAL



2
RDS(ON)
where ηTOTAL is the total number of phases.
Generally, a small high-side MOSFET is desired to
reduce switching losses at high input voltages.
However, the RDS(ON) required to stay within package
power dissipation often limits how small the MOSFET
can be. Again, the optimum occurs when the switching
losses equal the conduction (RDS(ON)) losses. High-
side switching losses do not usually become an issue
until the input is greater than approximately 15V.
Calculating the power dissipation in high-side MOSFET
(NH) due to switching losses is difficult since it must
allow for difficult quantifying factors that influence the
turn-on and turn-off times. These factors include the
internal gate resistance, gate charge, threshold
voltage, source inductance, and PC board layout
characteristics. The following switching-loss calculation
provides only a very rough estimate and is no substi-
tute for breadboard evaluation, preferably including
verification using a thermocouple mounted on NH:
PD
(NH
SWITCHING)
=
(VIN(MAX))2


CRSSfSW
IGATE





ILOAD
η TOTAL



where CRSS is the reverse transfer capacitance of NH
and IGATE is the peak gate-drive source/sink current
(1A typ).
Switching losses in the high-side MOSFET can become
an insidious heat problem when maximum AC adapter
voltages are applied due to the squared term in the C ×
VIN2 × fSW switching-loss equation. If the high-side
MOSFET chosen for adequate RDS(ON) at low battery
voltages becomes extraordinarily hot when biased from
VIN(MAX), consider choosing another MOSFET with
lower parasitic capacitance.
For the low-side MOSFET (NL), the worst-case power
dissipation always occurs at maximum input voltage:
PD
(NL
RESISTIVE)
=

1

−


VOUT
VIN(MAX)








ILOAD
η TOTAL
2


RDS(ON)
The worst-case for MOSFET power dissipation occurs
under heavy overloads that are greater than
ILOAD(MAX) but are not quite high enough to exceed
the current limit and cause the fault latch to trip. To pro-
tect against this possibility, you can “overdesign” the
circuit to tolerate:
ILOAD
=
ηTOTAL IVALLEY(MAX)
+
∆IINDUCTOR
2


=
η TOTAL IVALLEY(MAX)
+


ILOAD(MAX)LIR
2


where IVALLEY(MAX) is the maximum valley current
allowed by the current-limit circuit, including threshold
tolerance and on-resistance variation. The MOSFETs
must have a good-size heatsink to handle the overload
power dissipation.
Choose a Schottky diode (DL) with a forward voltage
low enough to prevent the low-side MOSFET body
diode from turning on during the dead time. As a gen-
eral rule, select a diode with a DC current rating equal
to 1/3 of the load current-per-phase. This diode is
optional and can be removed if efficiency is not critical.
Boost Capacitors
The boost capacitors (CBST) must be selected large
enough to handle the gate charging requirements of
the high-side MOSFETs. Typically, 0.1µF ceramic
capacitors work well for low-power applications driving
34 ______________________________________________________________________________________