English
Language : 

X5001_06 Datasheet, PDF (5/20 Pages) Intersil Corporation – CPU Supervisor
X5001
PRINCIPLES OF OPERATION
Power-on Reset
Application of power to the X5001 activates a power-
on reset circuit. This circuit goes active at 1V and pulls
the RESET/RESET pin active. This signal prevents
the system microprocessor from starting to operate
with insufficient voltage or prior to stabilization of the
oscillator. When VCC exceeds the device VTRIP value
for 200ms (nominal) the circuit releases RESET,
allowing the processor to begin executing code.
Low Voltage Monitoring
During operation, the X5001 monitors the VCC level
and asserts RESET if supply voltage falls below a pre-
set minimum VTRIP. The RESET signal prevents the
microprocessor from operating in a power fail or
brownout condition. The RESET signal remains active
until the voltage drops below 1V. It also remains active
until VCC returns and exceeds VTRIP for 200ms.
Watchdog Timer
The watchdog timer circuit monitors the microprocessor
activity by monitoring the WDI input. The microproces-
sor must toggle the CS/WDI pin periodically to prevent
a RESET signal. The CS/WDI pin must be toggled
from HIGH to LOW prior to the expiration of the watch-
dog time out period. The state of two nonvolatile control
bits in the watchdog register determine the watchdog
timer period.
Vcc Threshold Reset Procedure
The X5001 is shipped with a standard VCC threshold
(VTRIP) voltage. This value will not change over normal
operating and storage conditions. However, in applica-
tions where the standard VTRIP is not exactly right, or if
higher precision is needed in the VTRIP value, the
X5001 threshold may be adjusted. The procedure is
described in the following sections, and requires the
application of a high voltage control signal.
Setting the VTRIP Voltage
This procedure is used to set the VTRIP to a higher
voltage value. For example, if the current VTRIP is 4.4V
and the new VTRIP is 4.6V, this procedure will directly
make the change. If the new setting is to be lower than
the current setting, then it is necessary to reset the trip
point before setting the new value.
To set the new VTRIP voltage, apply the desired VTRIP
threshold voltage to the VCC pin and tie the WPE pin to
the programming voltage VP. Then a VTRIP programming
command sequence is sent to the device over the SPI
interface. This VTRIP programming sequence consists of
pulling CS LOW, then clocking in data 03h, 00h and 01h.
This is followed by bringing CS HIGH then LOW and
clocking in data 02h, 00h, and 01h (in order) and bringing
CS HIGH. This initiates the VTRIP programming
sequence. VP is brought LOW to end the operation.
Resetting the VTRIP Voltage
This procedure is used to set the VTRIP to a “native”
voltage level. For example, if the current VTRIP is 4.4V
and the new VTRIP must be 4.0V, then the VTRIP must
be reset. When VTRIP is reset, the new VTRIP is some-
thing less than 1.7V. This procedure must be used to
set the voltage to a lower value.
To reset the VTRIP voltage, apply greater than 3V to
the VCC pin and tie the WPE pin to the programming
voltage VP. Then a VTRIP command sequence is sent
to the device over the SPI interface. This VTRIP pro-
gramming sequence consists of pulling CS LOW, then
clocking in data 03h, 00h and 01h. This is followed by
bringing CS HIGH then LOW and clocking in data 02h,
00h, and 03h (in order) and bringing CS HIGH. This
initiates the VTRIP programming sequence. VP is
brought LOW to end the operation.
5
FN8125.1
May 30, 2006