English
Language : 

BX80557430SL9XN Datasheet, PDF (75/100 Pages) Intel Corporation – Intel® Celeron® Processor 400 Series
Thermal Specifications and Design Considerations
5 Thermal Specifications and
Design Considerations
5.1
Note:
5.1.1
Processor Thermal Specifications
The processor requires a thermal solution to maintain temperatures within the
operating limits as set forth in Section 5.1.1. Any attempt to operate the processor
outside these operating limits may result in permanent damage to the processor and
potentially other components within the system. As processor technology changes,
thermal management becomes increasingly crucial when building computer systems.
Maintaining the proper thermal environment is key to reliable, long-term system
operation.
A complete thermal solution includes both component and system level thermal
management features. Component level thermal solutions can include active or passive
heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system
level thermal solutions may consist of system fans combined with ducting and venting.
For more information on designing a component level thermal solution, refer to the
Intel® Celeron® Processor 400 Series Thermal and Mechanical Design Guidelines.
The boxed processor will ship with a component thermal solution. Refer to Chapter 7
for details on the boxed processor.
Thermal Specifications
To allow for the optimal operation and long-term reliability of Intel processor-based
systems, the system/processor thermal solution should be designed such that the
processor remains within the minimum and maximum case temperature (TC)
specifications when operating at or below the Thermal Design Power (TDP) value listed
per frequency in Table . Thermal solutions not designed to provide this level of thermal
capability may affect the long-term reliability of the processor and system. For more
details on thermal solution design, refer to the Intel® Celeron® Processor 400 Series
Thermal and Mechanical Design Guidelines.
The processor uses a methodology for managing processor temperatures which is
intended to support acoustic noise reduction through fan speed control. Selection of the
appropriate fan speed is based on the relative temperature data reported by the
processor’s Platform Environment Control Interface (PECI) bus as described in
Section 5.4.1.1. The temperature reported over PECI is always a negative value and
represents a delta below the onset of thermal control circuit (TCC) activation, as
indicated by PROCHOT# (see Section 5.2). Systems that implement fan speed control
must be designed to take these conditions in to account. Systems that do not alter the
fan speed only need to guarantee the case temperature meets the thermal profile
specifications.
To determine a processor's case temperature specification based on the thermal profile,
it is necessary to accurately measure processor power dissipation. Intel has developed
a methodology for accurate power measurement that correlates to Intel test
temperature and voltage conditions. Refer to the Intel® Celeron® Processor 400 Series
Thermal and Mechanical Design Guidelines for the details of this methodology.
The case temperature is defined at the geometric top center of the processor. Analysis
indicates that real applications are unlikely to cause the processor to consume
maximum power dissipation for sustained time periods. Intel recommends that
Datasheet
75