English
Language : 

LM3S618 Datasheet, PDF (333/572 Pages) List of Unclassifed Manufacturers – Microcontroller
Stellaris® LM3S618 Microcontroller
10.3.1
10.3.2
the input source and mode (differential versus single-ended input), interrupt generation on sample
completion, and the indicator for the last sample in the sequence.
Sample Sequencers
The sampling control and data capture is handled by the sample sequencers. All of the sequencers
are identical in implementation except for the number of samples that can be captured and the depth
of the FIFO. Table 10-2 on page 333 shows the maximum number of samples that each sequencer
can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit
word, with the lower 10 bits containing the conversion result.
Table 10-2. Samples and FIFO Depth of Sequencers
Sequencer
SS3
SS2
SS1
SS0
Number of Samples
1
4
4
8
Depth of FIFO
1
4
4
8
For a given sample sequence, each sample is defined by two 4-bit nibbles in the ADC Sample
Sequence Input Multiplexer Select (ADCSSMUXn) and ADC Sample Sequence Control
(ADCSSCTLn) registers, where "n" corresponds to the sequence number. The ADCSSMUXn
nibbles select the input pin, while the ADCSSCTLn nibbles contain the sample control bits
corresponding to parameters such as temperature sensor selection, interrupt enable, end of
sequence, and differential input mode. Sample sequencers are enabled by setting the respective
ASENn bit in the ADC Active Sample Sequencer (ADCACTSS) register, and should be configured
before being enabled.
When configuring a sample sequence, multiple uses of the same input pin within the same sequence
is allowed. In the ADCSSCTLn register, the IEn bits can be set for any combination of samples,
allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END
bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END
bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete
execution of the sample sequence after the fifth sample.
After a sample sequence completes execution, the result data can be retrieved from the ADC
Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers
that read a single address to "pop" result data. For software debug purposes, the positions of the
FIFO head and tail pointers are visible in the ADC Sample Sequence FIFO Status (ADCSSFSTATn)
registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored
using the ADCOSTAT and ADCUSTAT registers.
Module Control
Outside of the sample sequencers, the remainder of the control logic is responsible for tasks such
as:
■ Interrupt generation
■ Sequence prioritization
■ Trigger configuration
July 14, 2014
333
Texas Instruments-Production Data