English
Language : 

AMC7812 Datasheet, PDF (33/92 Pages) Texas Instruments – 12-Bit ANALOG MONITORING AND CONTROL SOLUTION with Multichannel ADC, DACs, and Temperature Sensors
AMC7812
www.ti.com
SBAS513D – JANUARY 2011 – REVISED OCTOBER 2012
ADC Data Format
For a single ended input, the conversion result is stored in straight binary format. For a differential input, the
results are stored in twos complement format.
SCLK Clock Noise Reduction
To avoid noise caused by the bus clock, it is recommended that no bus clock activity occurs for at least the
conversion process time immediately after the ADC conversion starts.
Programmable Conversion Rate
The maximum conversion rate is 500kSPS for a single channel in auto mode, as shown in Table 1. The
conversion rate is programmable through the CONV-RATE-[1:0] bits of AMC Configuration Register 1. When
more than one channel is selected, the conversion rate is divided by the number of channels selected in ADC
Channel Register 0 and ADC Channel Register 1. In auto mode, the CONV-RATE-[1:0] bits determine the actual
conversion rate. In direct mode, the CONV-RATE-[1:0] bits limit the maximum possible conversion rate. The
actual conversion rate in direct mode is determined by the rate of the conversion trigger. Note that when a trigger
is issued, there may be a delay of up to 4µs to internally synchronize and initiate the start of the sequential
channel conversion process. In both direct and auto modes, when the CONV-RATE-[1:0] bits are set to a value
other than the maximum rate ('00'), nap mode is activated between conversions. By activating nap mode, the
AIDD supply current is reduced, as shown in Figure 67.
CONV-RATE-1
0
0
1
1
CONV-RATE-0
0
1
0
1
Table 1. ADC Conversion Rate
tACQ
(µs)
0.375
2.375
6.375
14.375
tCONV
(µs)
1.625
1.625
1.625
1.625
NAP
ENABLED
No
Yes
Yes
Yes
THROUGHPUT
(Single-Channel Auto Mode)
500kSPS (default)
250kSPS
125kSPS
62.5kSPS
Handshaking with the Host (see AMC Configuration Register 0)
The DAV pin and the DAVF (data available flag) bit in AMC Configuration Register 0 provide handshaking with
the host. Pin and bit status depend on the conversion mode (direct or auto), as shown in Figure 84 and
Figure 85. In direct mode, after ADC-n-Data Registers of all of the selected channels are updated, the DAVF bit
in AMC Configuration Register 0 is set immediately to '1', and the DAV pin is active (low) to signify that new data
are available. Reading the ADC-n-Data Register or restarting via the external CNVT pin, the ADC clears the
DAVF bit to '0' and deactivates the DAV pin (high). If an internal convert start (ICONV bit) is used to start the new
ADC conversion, in order to reset the DAV status, an ADC-n-Data Register must be read after the current
conversion finishes before a new conversion can be started.
In auto-mode, after the ADC-n-Data Registers of the selected channels are updated, a pulse of 1µs (low)
appears on the DAV pin to signify that new data are available. However, the DAVF bit is always cleared to '0' in
auto-mode.
Copyright © 2011–2012, Texas Instruments Incorporated
Product Folder Links: AMC7812
Submit Documentation Feedback
33