English
Language : 

MC56U032DCCA Datasheet, PDF (37/64 Pages) Samsung semiconductor – Dual Voltage MultiMediaCard Specification
MultiMediaCardTM
command is received.
* Multiple block write with pre-defined block count : The card will transfer the requested number of data
blocks, terminate the transaction and return to transfer state. Stop command is not required at the
end of this type of multiple block write, unless terminated with an error. In other to start multiple
block write with pre-defined block count, the host must use the SET_BLOCK COUNT
command(CMD23) immediately preceding the WRITE_MULTIPLE_BLOCK(CMD25) command.
Otherwise this card will start an open-ended multiple block write which can be stopped using the
STOP_TRANSMISSION command.
The host can abort writing at any time, within a multiple block operation regardless of the its type.
Transaction abort is done by sending the stop transmission command. If a multiple block write with
predefined block count is aborted, the data in the remaining blocks is not defined.
4.9.3 Erase
The erasable unit is the Erase Group. Erase group is measured in write blocks which are the basic
writable units of the card. The size of the Erase group is a card specific parameter and defined in the
CSD.
The host can erase a contiguous range of Erase Groups. Starting the erase process is a three steps
sequence. First the host defines the start address of the range using the
ERASE_GROUP_START(CMD35) command, next it defines the last address of the range using the
ERASE_GROUP_END(CMD36) command and finally it starts the erase process by issuing the
ERASE(CMD38) command. The address field in the erase commands is an Erase Group address in
byte units. The card will all LSB’s below the Erase Group size, effectively rounding the address down to
the Erase Group boundary.
If an erase command is received out of sequence, the card shall set the ERASE_SEQ_ERROR bit in
the status register and reset the whole sequence.
If an out of sequence(neither of the erase commands, except SEND_STATUS) command received, the
card shall set the ERASE_RESET status bit in the status register, reset the erase sequence and
execute the last command.
If the erase range includes write protected blocks, the shall be left intact and only the non-protected
blocks shall be erased. The WP_ERASE_SKIP status bit in the status register shall be set.
As described above for block write, the card will indicate that an erase is in progress by holding DAT
low The actual erase time may be quite long, and the host may issue CMD7 to deselect the card.
4.9.4 Write Protect Management
Card data may be protected against either erase or write. The entire card may be permanently write
protected by the manufacturer or content provider by setting the permanent or temporary write protect
bits in the CSD. Portions of the data may be protected (in units of WP_GRP_SIZE sectors as specified
in the CSD), and the write protection may be changed by the application. The SET_WRITE_PROT
command sets the write protection of the addressed write-protect group, and the CLR_WRITE_PROT
command clears the write protection of the addressed write-protect group. The SEND_WRITE_PROT
command is similar to a single block read command. The card shall send a data block containing 32
write protection bits (representing 32 write protect groups starting at the specified address) followed by
16 CRC bits. The address field in the write protect commands is a group address in byte units. The
card will ignore all LSB’s below the group size.
4.9.5 Card Lock/Unlock Operation
37