English
Language : 

M368L6523CUS Datasheet, PDF (10/25 Pages) Samsung semiconductor – DDR SDRAM Unbuffered Module
256MB, 512MB, 1GB Unbuffered DIMM
DDR SDRAM
Absolute Maximum Ratings
Parameter
Voltage on any pin relative to VSS
Voltage on VDD & VDDQ supply relative to VSS
Storage temperature
Power dissipation
Short circuit current
Symbol
VIN, VOUT
VDD, VDDQ
TSTG
PD
IOS
Value
-0.5 ~ 3.6
-1.0 ~ 3.6
-55 ~ +150
1.5 * # of component
50
Unit
V
V
°C
W
mA
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
Functional operation should be restricted to recommend operation condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.
DC Operating Conditions
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 70°C)
Parameter
Symbol
Min
Max
Unit Note
Supply voltage(for device with a nominal VDD of 2.5V for DDR333)
VDD
2.3
2.7
V
Supply voltage(for device with a nominal VDD of 2.6V for DDR400)
VDD
2.5
2.7
V
I/O Supply voltage(for device with a nominal VDD of 2.5V for DDR333)
VDDQ
2.3
2.7
V
I/O Supply voltage(for device with a nominal VDD of 2.6V for DDR400)
VDDQ
2.5
2.7
V
I/O Reference voltage
VREF 0.49*VDDQ 0.51*VDDQ V
1
I/O Termination voltage(system)
Input logic high voltage
VTT
VREF-0.04
VREF+0.04
V
2
VIH(DC) VREF+0.15
VDDQ+0.3
V
Input logic low voltage
VIL(DC)
-0.3
VREF-0.15
V
Input Voltage Level, CK and CK inputs
VIN(DC)
-0.3
VDDQ+0.3
V
Input Differential Voltage, CK and CK inputs
VID(DC)
0.36
VDDQ+0.6
V
3
V-I Matching: Pullup to Pulldown Current Ratio
VI(Ratio)
0.71
1.4
-
4
Input leakage current
II
-2
2
uA
Output leakage current
IOZ
-5
5
uA
Output High Current(Normal strengh driver) ;VOUT = VTT + 0.84V
IOH
-16.8
mA
Output High Current(Normal strengh driver) ;VOUT = VTT - 0.84V
IOL
16.8
mA
Output High Current(Half strengh driver) ;VOUT = VTT + 0.45V
IOH
-9
mA
Output High Current(Half strengh driver) ;VOUT = VTT - 0.45V
IOL
9
mA
Note : 1. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the dc level of same. Peak-to
peak noise on VREF may not exceed +/-2% of the dc value.
2. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to
VREF, and must track variations in the DC level of VREF
3. VID is the magnitude of the difference between the input level on CK and the input level on CK.
4. The ratio of the pullup current to the pulldown current is specified for the same temperature and voltage, over the entire temper-
ature and voltage range, for device drain to source voltages from 0.25V to 1.0V. For a given output, it represents the maximum
difference between pullup and pulldown drivers due to process variation. The full variation in the ratio of the maximum to mini-
mum pullup and pulldown current will not exceed 1.7 for device drain to source voltages from 0.1 to 1.0.
Rev. 1.0 February. 2005