English
Language : 

COP8ACC Datasheet, PDF (12/43 Pages) National Semiconductor (TI) – 8-Bit CMOS ROM Based and OTP Microcontrollers with 4k or 16k Memory and High Resolution A/D
Pin Descriptions (Continued)
Port D is a 4-bit output port that is preset high when RESET
goes low. The user can tie two or more D port outputs
(except D2) together in order to get a higher drive.
Functional Description
The architecture of the devices is a modified Harvard archi-
tecture. With the Harvard architecture, the control store pro-
gram memory (ROM) is separated from the data store
memory (RAM). Both ROM and RAM have their own sepa-
rate addressing space with separate address buses. The
architecture, though based on the Harvard architecture, per-
mits transfer of data from ROM to RAM.
CPU REGISTERS
The CPU can do an 8-bit addition, subtraction, logical or shift
operation in one instruction (tC) cycle time.
There are six CPU registers:
A is the 8-bit Accumulator Register
PC® is the 15-bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally
post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be
optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/
interrupt stack (in RAM). The SP is initialized to RAM ad-
dress 06F with reset.
All the CPU registers are memory mapped with the excep-
tion of the Accumulator (A) and the Program Counter (PC).
PROGRAM MEMORY
The program memory consists of 4096 bytes of ROM a OTP
EPROM. These bytes may hold program instructions or
constant data (data tables for the LAID instruction, jump
vectors for the JID instruction, and interrupt vectors for the
VIS instruction). The program memory is addressed by the
15-bit program counter (PC). All interrupts in the devices
vector to program memory location 0FF Hex.
The COP8ACC7 device can be configured to inhibit external
reads of the program memory. This is done by programming
the Security Byte.
SECURITY FEATURE
The program memory array has an associate Security Byte
that is located outside of the program address range. This
byte can be addressed only from programming mode by a
programmer tool.
Security is an optional feature and can only be asserted after
the memory array has been programmed and verified. A
secured part will read all 00(hex) by a programmer. The part
will fail Blank Check and will fail Verify operations. A Read
operation will fill the programmer’s memory with 00(hex).
The Security Byte itself is always readable with value of
00(hex) if unsecure and FF(hex) if secure.
DATA MEMORY
The data memory address space includes the on-chip RAM
and data registers, the I/O registers (Configuration, Data and
Pin), the control registers, the MICROWIRE/PLUS SIO shift
register, and the various registers, and counters associated
with the timers (with the exception of the IDLE timer). Data
memory is addressed directly by the instruction or indirectly
by the B, X, and SP pointers.
The data memory consists of 128 bytes of RAM. Sixteen
bytes of RAM are mapped as “registers” at addresses 0F0 to
0FF Hex. These registers can be loaded immediately, and
also decremented and tested with the DRSZ (decrement
register and skip if zero) instruction. The memory pointer
registers X, B and SP are memory mapped into this space at
address locations 0FC to 0FF Hex respectively, with the
other registers being available for general usage.
The instruction set permits any bit in memory to be set, reset
or tested. All I/O and registers (except A and PC) are
memory mapped; therefore, I/O bits and register bits can be
directly and individually set, reset and tested. The accumu-
lator (A) bits can also be directly and individually tested.
Note: RAM contents are undefined upon power-up.
Reset
The RESET input when pulled low initializes the microcon-
troller. Initialization will occur whenever the RESET input is
pulled low. Upon initialization, the data and configuration
registers for ports L and G are cleared, resulting in these
Ports being initialized to the TRI-STATE mode. Pin G1 of the
G Port is an exception (as noted below) since pin G1 is
dedicated as the WATCHDOG and/or Clock Monitor error
output pin. Port D is set high. The PC, PSW, ICNTRL and
CNTRL-control registers are cleared. The Comparator Se-
lect Register is cleared. The S register is initialized to zero.
The Multi-Input Wakeup registers WKEN and WKEDG are
cleared. Wakeup register WKPND is unknown. The stack
pointer, SP, is initialized to 6F Hex.
The devices come out of reset with both the WATCHDOG
logic and the Clock Monitor detector armed, with the
WATCHDOG service window bits set and the Clock Monitor
bit set. The WATCHDOG and Clock Monitor circuits are
inhibited during reset. The WATCHDOG service window bits
being initialized high default to the maximum WATCHDOG
service window of 64k tC clock cycles. The Clock Monitor bit
being initialized high will cause a Clock Monitor error follow-
ing reset if the clock has not reached the minimum specified
frequency at the termination of reset. A Clock Monitor error
will cause an active low error output on pin G1. This error
output will continue until 16 tC-32 tC clock cycles following
the clock frequency reaching the minimum specified value,
at which time the G1 output will enter the TRI-STATE mode.
The external RC network shown in Figure 6 should be used
to ensure that the RESET pin is held low until the power
supply to the chip stabilizes.
WARNING:
When the devices are held in reset for a long time they will
consume high current (typically about 7 mA). This is not true
for the equivalent ROM device (COP8ACC5).
Oscillator Circuits
The chip can be driven by a clock input on the CKI input pin
which can be between DC and 10 MHz. The CKO output
clock is on pin G7 (crystal configuration). The CKI input
frequency is divided down by 10 to produce the instruction
cycle clock (tC).
www.national.com
12