English
Language : 

LTC3890-3 Datasheet, PDF (29/40 Pages) Linear Technology – 60V Low IQ, Dual, 2-Phase Synchronous Step-Down DC/DC Controller
LTC3890-3
Applications Information
4. Are the SENSE– and SENSE+ leads routed together with
minimum PC trace spacing? The filter capacitor between
SENSE+ and SENSE– should be as close as possible
to the IC. Ensure accurate current sensing with Kelvin
connections at the SENSE resistor.
5. Is the INTVCC decoupling capacitor connected close
to the IC, between the INTVCC and the power ground
pins? This capacitor carries the MOSFET drivers’ cur-
rent peaks. An additional 1µF ceramic capacitor placed
immediately next to the INTVCC and PGND pins can help
improve noise performance substantially.
6. Keep the switching nodes (SW1, SW2), top gate nodes
(TG1, TG2), and boost nodes (BOOST1, BOOST2) away
from sensitive small-signal nodes, especially from
the opposites channel’s voltage and current sensing
feedback pins. All of these nodes have very large and
fast moving signals and therefore should be kept on
the output side of the LTC3890-3 and occupy minimum
PC trace area.
7. Use a modified star ground technique: a low impedance,
large copper area central grounding point on the same
side of the PC board as the input and output capacitors
with tie-ins for the bottom of the INTVCC decoupling
capacitor, the bottom of the voltage feedback resistive
divider and the SGND pin of the IC.
PC Board Layout Debugging
Start with one controller on at a time. It is helpful to use
a DC-50MHz current probe to monitor the current in the
inductor while testing the circuit. Monitor the output switch-
ing node (SW pin) to synchronize the oscilloscope to the
internal oscillator and probe the actual output voltage as
well. Check for proper performance over the operating
voltage and current range expected in the application.
The frequency of operation should be maintained over the
input voltage range down to dropout and until the output
load drops below the low current operation threshold—
typically 25% of the maximum designed current level in
Burst Mode operation.
The duty cycle percentage should be maintained from cycle
to cycle in a well-designed, low noise PCB implementa-
tion. Variation in the duty cycle at a subharmonic rate can
suggest noise pickup at the current or voltage sensing
inputs or inadequate loop compensation. Overcompensa-
tion of the loop can be used to tame a poor PC layout if
regulator bandwidth optimization is not required. Only after
each controller is checked for its individual performance
should both controllers be turned on at the same time.
A particularly difficult region of operation is when one
controller channel is nearing its current comparator trip
point when the other channel is turning on its top MOSFET.
This occurs around 50% duty cycle on either channel due
to the phasing of the internal clocks and may cause minor
duty cycle jitter.
For more information www.linear.com/3890-3
38903f
29