English
Language : 

LTC3890-3 Datasheet, PDF (14/40 Pages) Linear Technology – 60V Low IQ, Dual, 2-Phase Synchronous Step-Down DC/DC Controller
LTC3890-3
Operation (Refer to the Functional Diagram)
5V SWITCH
20V/DIV
3.3V SWITCH
20V/DIV
INPUT CURRENT
5A/DIV
INPUT VOLTAGE
500mV/DIV
IIN(MEAS) = 2.53ARMS
IIN(MEAS) = 1.55ARMS
38903 F01
Figure 1. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the 2-Phase Regulator Allows
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Efficiency
Figure 1 compares the input waveforms for a representative
single-phase dual switching regulator to the LTC3890-3
2-phase dual switching regulator. An actual measure-
ment of the RMS input current under these conditions
shows that 2-phase operation dropped the input current
from 2.53ARMS to 1.55ARMS. While this is an impressive
reduction in itself, remember that the power losses are
proportional to IRMS2, meaning that the actual power wasted
is reduced by a factor of 2.66. The reduced input ripple
voltage also means less power is lost in the input power
path, which could include batteries, switches, trace/con-
nector resistances and protection circuitry. Improvements
in both conducted and radiated EMI also directly accrue
as a result of the reduced RMS input current and voltage.
Of course, the improvement afforded by 2-phase opera-
tion is a function of the dual switching regulator’s relative
duty cycles which, in turn, are dependent upon the input
voltage VIN (Duty Cycle = VOUT/VIN). Figure 2 shows how
the RMS input current varies for single phase and 2-phase
operation for 3.3V and 5V regulators over a wide input
voltage range.
It can readily be seen that the advantages of 2-phase op-
eration are not just limited to a narrow operating range,
for most applications is that 2-phase operation will reduce
the input capacitor requirement to that for just one chan-
nel operating at maximum current and 50% duty cycle.
3.0
SINGLE PHASE
2.5
DUAL CONTROLLER
2.0
1.5
2-PHASE
DUAL CONTROLLER
1.0
0.5 VO1 = 5V/3A
VO2 = 3.3V/3A
0
0
10
20
30
INPUT VOLTAGE (V)
40
38903 F02
Figure 2. RMS Input Current Comparison
14
For more information www.linear.com/3890-3
38903f