English
Language : 

LTC3826-1 Datasheet, PDF (18/32 Pages) Linear Technology – 30μA IQ, Dual, 2-Phase Synchronous Step-Down Controller
LTC3826-1
APPLICATIONS INFORMATION
EXTVCC LDO regulates it to 7.5V. Each of these can supply
a peak current of 50mA and must be bypassed to ground
with a minimum of 4.7μF ceramic capacitor. The ceramic
capacitor placed directly adjacent to the INTVCC and
PGND IC pins is highly recommended. Good bypassing
is needed to supply the high transient currents required
by the MOSFET gate drivers and to prevent interaction
between the channels.
High input voltage applications in which large MOSFETs
are being driven at high frequencies may cause the maxi-
mum junction temperature rating for the LTC3826-1 to be
exceeded. The INTVCC current, which is dominated by the
gate charge current, may be supplied by either the 5.25V
VIN LDO or the 7.5V EXTVCC LDO. When the voltage on the
EXTVCC pin is less than 4.7V, the VIN LDO is enabled. Power
dissipation for the IC in this case is highest and is equal
to VIN • INTVCC. The gate charge current is dependent on
operating frequency as discussed in the Efficiency Consid-
erations section. The junction temperature can be estimated
by using the equation given in Note 2 of the Electrical Char-
acteristics. For example, the LTC3826-1 INTVCC current is
limited to less than 24mA from a 24V supply when in the
G package and not using the EXTVCC supply:
TJ = 70°C + (24mA)(24V)(95°C/W) = 125°C
To prevent the maximum junction temperature from being
exceeded, the input supply current must be checked while
operating in continuous conduction mode (PLLIN/MODE
= INTVCC) at maximum VIN.
When the voltage applied to EXTVCC rises above 4.7V, the
VIN LDO is turned off and the EXTVCC LDO is enabled. The
EXTVCC LDO remains on as long as the voltage applied to
EXTVCC remains above 4.5V. The EXTVCC LDO attempts
to regulate the INTVCC voltage to 7.5V, so while EXTVCC
is less than 7.5V, the LDO is in dropout and the INTVCC
voltage is approximately equal to EXTVCC. When EXTVCC
is greater than 7.5V up to an absolute maximum of 10V,
INTVCC is regulated to 7.5V.
Using the EXTVCC LDO allows the MOSFET driver and
control power to be derived from one of the LTC3826-1’s
switching regulator outputs (4.7V ≤ VOUT ≤ 10V) during
normal operation and from the VIN LDO when the output
is out of regulation (e.g., start-up, short-circuit). If more
current is required through the EXTVCC LDO than is speci-
fied, an external Schottky diode can be added between the
EXTVCC and INTVCC pins. Do not apply more than 10V to
the EXTVCC pin and make sure than EXTVCC ≤ VIN.
Significant efficiency and thermal gains can be realized
by powering INTVCC from the output, since the VIN cur-
rent resulting from the driver and control currents will be
scaled by a factor of (Duty Cycle)/(Switcher Efficiency).
For 5V to 10V regulator outputs, this means connecting
the EXTVCC pin directly to VOUT. Tying the EXTVCC pin
to a 5V supply reduces the junction temperature in the
previous example from 125°C to:
TJ = 70°C + (24mA)(5V)(95°C/W) = 81°C
However, for 3.3V and other low voltage outputs, addi-
tional circuitry is required to derive INTVCC power from
the output.
The following list summarizes the four possible connec-
tions for EXTVCC:
1. EXTVCC Left Open (or Grounded). This will cause
INTVCC to be powered from the internal 5.25V regulator
resulting in an efficiency penalty of up to 10% at high
input voltages.
2. EXTVCC Connected directly to VOUT. This is the normal
connection for a 5V to 10V regulator and provides the
highest efficiency.
3. EXTVCC Connected to an External supply. If an external
supply is available in the 5V to 10V range, it may be
used to power EXTVCC providing it is compatible with
the MOSFET gate drive requirements.
38261fb
18