English
Language : 

ICS849S625I Datasheet, PDF (13/24 Pages) Integrated Device Technology – Ten selectable differential LVPECL or LVDS outputs
ICS849S625I Data Sheet
CRYSTAL-TO-LVPECL/LVDS CLOCK SYNTHESIZER
Overdriving the XTAL Interface
The XTAL_IN input can accept a single-ended LVCMOS signal
through an AC coupling capacitor. A general interface diagram is
shown in Figure 1A. The XTAL_OUT pin can be left floating. The
maximum amplitude of the input signal should not exceed 2V and the
input edge rate can be as slow as 10ns. This configuration requires
that the output impedance of the driver (Ro) plus the series
resistance (Rs) equals the transmission line impedance. In addition,
matched termination at the crystal input will attenuate the signal in
half. This can be done in one of two ways. First, R1 and R2 in parallel
should equal the transmission line impedance. For most 50
applications, R1 and R2 can be 100. This can also be
accomplished by removing R1 and making R2 50. By overdriving
the crystal oscillator, the device will be functional, but note, the device
performance is guaranteed by using a quartz crystal.
3.3V
Ro ~ 7 Ohm
RS 43
Driv er_LVCMOS
3.3V
R1
100
Zo = 50 Ohm
R2
100
C1
0.1uF
XTAL_IN
XTAL_OUT
Cry stal Input Interf ace
Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface
VCC=3.3V
LVPECL
Zo = 50 Ohm
Zo = 50 Ohm
C1
XTAL_IN
R1
0.1uF
50
XTAL_OUT
Cry stal Input Interf ace
R2
50
R3
50
Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface
ICS849S625BYI REVISION A OCTOBER 1, 2012
13
©2012 Integrated Device Technology, Inc.