English
Language : 

EPC1064V Datasheet, PDF (16/36 Pages) List of Unclassifed Manufacturers – Configuration Devices for SRAM-Based LUT Devices
Configuration Devices for SRAM-based LUT Devices Data Sheet
Notes to Figure 6:
(1) Do not use EPC2 devices to configure FLEX 6000 devices.
(2) The pull-up resistor should be connected to the same supply voltage as the configuration device. All pull-up
resistors are 1 kΩ (APEX 20KE pull-resistors are 10 kΩ). The OE and nCS pins on EPC2 devices have internal, user-
configurable 1-kΩ pull-up resistors. If internal pull-up resistors are used, external pull-up resistors should not be
used on these pins. The Quartus II software uses the internal pull-up resistors by default. To turn off the internal
pull-up resistors, check the Disable nCS and OE pull-ups on configuration device option when generating programming
files.
(3) The diagram shows an APEX II, APEX 20K, Mercury, ACEX 1K, or FLEX 10K device, which has MSEL0 and MSEL1
tied to ground. For FLEX 6000 devices, MSEL is tied to ground, and the DATA0 pin is named DATA. EPC2 cannot be
used with FLEX 6000 devices. All other connections are the same for FLEX 6000 devices.
(4) EPC4, EPC8, and EPC16 devices cannot be cascaded.
(5) The nINIT_CONF pin is only available on EPC2 devices and has an internal pull up of 1 kΩ that is always active. If
nINIT_CONF is not available or not used, nCONFIG must be pulled to VCC either directly or through a 1-kΩ resistor.
(6) To ensure successful configuration between APEX 20KE and configuration devices in all possible power-up
sequences, pull up nCONFIG to VCCINT.
(7) This diagram is for APEX 20KE devices only.
(8) To isolate the 1.8-V and 3.3-V power supplies when configuration APEX 20KE devices, add a diode between the
APEX 20KE device’s nCONFIG pin and the configuration device’s nINIT_CONF pin. Select a diode with a threshold
voltage (VT) less than or queal to 0.7 V. The diode will make the nINIT_CONF pin an open-drain pin; the pin will
only be able to drive low or tri-state.
f
For more information on APEX 20K, ACEX 1K, FLEX 10K, or FLEX 6000
device configuration, see Application Note 116 (Configuring ACEX 1K,
APEX 20K, FLEX 10K & FLEX 6000 Devices).
Figure 7 shows the timing waveform for the configuration device scheme.
Figure 7. Configuration Device Scheme Timing Waveform
nINIT_CONF or VCC/nCONFIG
tPOR
OE/nSTATUS
nCS/CONF_DONE
DCLK
DATA
tOEZX
User I/O
INIT_DONE
tDSU tCL
D0 D1
tCO
Tri-State
tCH
tDH
D2 D3
Dn
Tri-State
(2)
(1)
User Mode
Notes to Figure 7:
(1) The configuration devivce will drive DATA low after configuration.
(2) APEX II and APEX 20K devices (except EP2A70 devices) enter user mode 40 clock cycles after CONF_DONE goes
high. EP2A70 devices enter user mode 72 clock cycles after CONF_DONE goes high. FLEX 10K and FLEX 6000 devices
enter user mode 10 clock cycles after CONF_DONE goes high. Mercury devices enter user mode 136 clock cycles after
CONF_DONE goes high.
16
Altera Corporation