English
Language : 

DS1251Y Datasheet, PDF (11/12 Pages) Dallas Semiconductor – 4096K NV SRAM with Phantom Clock
DS1251Y
NOTES:
1. WE is high for a read cycle.
2. OE = VIH or VIL. If OE = VIH during write cycle, the output buffers remain in a high impedance state.
3. tWP is specified as the logical AND of CE and WE. tWP is measured from the latter of CE or WE going low to the
earlier of CE or WE going high.
4. tDH, tDS are measured from the earlier of CE or WE going high.
5. These parameters are sampled with a 50 pF load and are not 100% tested.
6. If the CE low transition occurs simultaneously with or later than the WE low transition in Write Cycle 1, the output
buffers remain in a high impedance state during this period.
7. If the CE high transition occurs prior to or simultaneously with the WE high transition, the output buffers remain
in a high impedance state during this period.
8. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition, the output buffers
remain in a high impedance state during this period.
9. The expected tDR is defined as accumulative time in the absence of VCC with the clock oscillator running.
10. tWR is a function of the latter occurring edge of WE or CE.
11. tDH and tDS are a function of the first occurring edge of WE or CE.
12. RST (Pin1) has an internal pull–up resistor.
13. Real–Time Clock Modules can be successfully processed through conventional wave–soldering techniques as
long as temperature exposure to the lithium energy source contained within does not exceed +85°C. Post solder
cleaning with water washing techniques is acceptable, provided that ultrasonic vibration is not used.
032697 11/12