English
Language : 

BQ24751RHDRG4 Datasheet, PDF (21/38 Pages) Texas Instruments – Host-controlled Multi-chemistry Battery Charger
bq24751
www.ti.com............................................................................................................................................... SLUS734D – DECEMBER 2006 – REVISED MARCH 2009
When the adapter is not detected, the ACDRV output is pulled to PVCC to turn off the ACFET, disconnecting the
adapter from system. BATDRV stays at ACN – 6 V to connect the battery to system.
At 700 ms after adapter is detected, the system begins to switch from the battery to the adapter. The PVCC
voltage must be 185 mV above BAT to enable the switching. The break-before-make logic turns off both ACFET
and BATFET for 10µs before ACFET turns on. This isolates the battery from shoot-through current or any large
discharging current. The BATDRV output is pulled up to ACN and the ACDRV pin is set to PVCC – 6 V by an
internal regulator to turn on the p-channel ACFET, connecting the adapter to the system.
When the adapter is removed, the system waits till ACN drops back to within 285 mV above BAT to switch from
the adapter back to the battery. The break-before-make logic ensures a 10-µs dead time. The ACDRV output is
pulled up to PVCC and the BATDRV pin is set to ACN – 6 V by an internal regulator to turn on the p-channel
BATFET, connecting the battery to the system.
Asymmetrical gate drive for the ACDRV and BATDRV drivers provides fast turn-off and slow turn-on of the
ACFET and BATFET to help the break-before-make logic and to allow a soft-start at turn-on of either FET. The
soft-start time can be further increased, by putting a capacitor from gate to source of the p-channel power
MOSFETs.
Battery Learn Cycles
A battery Learn cycle can be implemented using the LEARN pin. A logic low on LEARN keeps the system power
selector logic in its default states dependant on the adapter. If adapter is not detected, then; the ACFET is kept
off, and the BATFET is kept on. If the adapter is detected, the BATFET is kept off, and the ACFET is kept on.
When the LEARN pin is at logic high, the system power selector logic is overridden, keeping the ACFET off and
the BATFET on when the adapter is present. This is used to allow the battery to discharge in order to calibrate
the battery gas gauge over a complete discharge/charge cycle. Charge turns off when LEARN is high. The
controller automatically exits the learn cycle when BAT < 2.9 V per cell. BATDRV turns off and ACDRV turns on.
Automatic Internal Soft-Start Charger Current
The charger automatically soft-starts the charger regulation current every time the charger is enabled to ensure
there is no overshoot or stress on the output capacitors or the power converter. The soft-start consists of
stepping-up the charge regulation current into 8 evenly-divided steps up to the programmed charge current. Each
step lasts approximately 1.7 ms, for a typical rise time of 13.6 ms. No external components are needed for this
function.
Converter Operation
The synchronous-buck PWM converter uses a fixed-frequency (300 kHz) voltage mode with a feed-forward
control scheme. A Type-III compensation network allows the use of ceramic capacitors at the output of the
converter. The compensation input stage is internally connected between the feedback output (FBO) and the
error-amplifier input (EAI). The feedback compensation stage is connected between the error amplifier input
(EAI) and error amplifier output (EAO). The LC output filter is selected for a nominal resonant frequency of 8
kHz–12.5 kHz.
The
resonant
frequency,
fo,
is
given
by:
fo
+
2p
1
ǸLoCo
where
(from
Figure
1
schematic)
• CO = C11 + C12
• LO = L1
An internal sawtooth ramp is compared to the internal EAO error-control signal to vary the duty cycle of the
converter. The ramp height is one-fifteenth of the input adapter voltage, making it always directly proportional to
the input adapter voltage. This cancels out any loop-gain variation due to a change in input voltage, and
simplifies the loop compensation. The ramp is offset by 200 mV in order to allow a 0% duty cycle when the EAO
signal is below the ramp. The EAO signal is also allowed to exceed the sawtooth ramp signal in order to operate
with a 100% duty-cycle PWM request. Internal gate-drive logic allows a 99.98% duty-cycle while ensuring that
Copyright © 2006–2009, Texas Instruments Incorporated
Product Folder Link(s) :bq24751
Submit Documentation Feedback
21