English
Language : 

OMAP3530_08 Datasheet, PDF (178/264 Pages) Texas Instruments – Applications Processor
OMAP3530/25 Applications Processor
SPRS507B – FEBRUARY 2008 – REVISED JULY 2008
www.ti.com
6.4.2 SDRAM Controller Subsystem (SDRC)
The SDRAM controller subsystem (SDRC) module provides connectivity between the
OMAP3530/2530/2530/2530/25 Applications Processor and external DRAM memory components. The
SDRC module only supports low-power double-data-rate (LPDDR) SDRAM devices. Memory devices can
be interfaced to the SDRC using a stacked-memory approach or through the printed circuit board (PCB).
The stacked-memory approach uses the package-on-package memory interface pins (available only on
CBB package).
6.4.2.1 SDRAM Controller Subsystem Device-Specific Information
The approach to specifying interface timing for the SDRC memory bus is different than on other interfaces
such as the general-purpose memory controller (GPMC) and the multi-channel buffered serial ports
(McBSPs). For these other interfaces the device timing was specified in terms of data manual
specifications and I/O buffer information specification (IBIS) models.
For the SDRC memory bus, the approach is to specify compatible memory devices and provide the
printed circuit board (PCB) solution and guidelines directly to the user. Texas Instruments (TI) has
performed the simulation and system characterization to ensure all interface timings in this solution are
met.
6.4.2.2 LPDDR Interface
The LPDDR interface is balled out on the bottom side of all OMAP35x packages and on the top side of
OMAP35x POP packages. The LPDDR interface on the top of the POP package has been designed for
compatibility any POP LPDDR device with a matching footprint and compliance with the JEDEC
LPDDR-266 specification.
This section provides the timing specification for the bottom-side LPDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory
system without the need for a complex timing closure process. For more information regarding guidelines
for using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing
Specification Application Report (literature number SPRAAV0).
6.4.2.2.1 LPDDR Interface Schematic
Figure 6-17 and Figure 6-18 show the LPDDR interface schematics for a LPDDR memory system. The 1
x16 LPDDR system schematic is identical to Figure 6-17 except that the high word LPDDR device is
deleted.
178 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback