English
Language : 

SI8605 Datasheet, PDF (22/40 Pages) Silicon Laboratories – BIDIRECTIONAL IC ISOLATORS WITH UNIDIRECTIONAL DIGITAL CHANNELS
Si860x
4.4. Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating
(commonly referred to as working voltage protection). Table 6 on page 10 and Table 7 on page 11 detail the
working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.)
requirements before starting any design that uses a digital isolator.
4.4.1. Supply Bypass
The Si860x family requires a 0.1 µF bypass capacitor between AVDD and AGND and BVDD and BGND. The
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user
may also include resistors (50–300  ) in series with the inputs and outputs if the system is excessively noisy.
4.4.2. Output Pin Termination
The nominal output impedance of an non-I2C isolator channel is approximately 50 , ±40%, which is a combination
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
22
Rev. 1.4