English
Language : 

S-1740 Datasheet, PDF (9/47 Pages) ABLIC Inc. – 5.5 V INPUT, 100 mA VOLTAGE REGULATOR WITH SUPPLY VOLTAGE DIVIDED OUTPUT
POWER MONITORING OUTPUT, 5.5 V INPUT, 100 mA CMOS VOLTAGE REGULATOR WITH 0.5 μA SUPER LOW CURRENT CONSUMPTION
Rev.1.1_00
S-1740/1741 Series
 Electrical Characteristics
1. Regulator block
Item
Output voltage*1
Output current*2
Dropout voltage*3
Line regulation
Symbol
VOUT(E)
IOUT
Vdrop
ΔVOUT1
ΔVIN•VOUT
Table 14
Condition
VIN = VOUT(S) + 1.0 V,
IOUT = 10 mA
1.0 V ≤ VOUT(S) < 1.5 V
1.5 V ≤ VOUT(S) ≤ 3.5 V
VIN ≥ VOUT(S) + 1.0 V
IOUT = 10 mA
1.0 V ≤ VOUT(S) < 1.1 V
1.1 V ≤ VOUT(S) < 1.2 V
1.2 V ≤ VOUT(S) < 1.3 V
1.3 V ≤ VOUT(S) < 1.4 V
1.4 V ≤ VOUT(S) < 1.5 V
1.5 V ≤ VOUT(S) < 1.7 V
1.7 V ≤ VOUT(S) < 1.8 V
1.8 V ≤ VOUT(S) < 2.0 V
2.0 V ≤ VOUT(S) < 2.5 V
2.5 V ≤ VOUT(S) < 2.8 V
2.8 V ≤ VOUT(S) < 3.0 V
3.0 V ≤ VOUT(S) ≤ 3.5 V
VOUT(S) + 0.5 V ≤ VIN ≤ 5.5 V, IOUT = 10 mA
(Ta = +25°C unless otherwise specified)
Min.
Typ.
Max.
Unit
Test
Circuit
VOUT(S)
− 0.015
VOUT(S)
VOUT(S)
+ 0.015
V
1
VOUT(S)
× 0.99
VOUT(S)
VOUT(S)
× 1.01
V
1
100*5
−
−
mA
3
0.50
−
−
V
1
0.40
−
−
V
1
0.30
−
−
V
1
0.20
−
−
V
1
0.10
−
−
V
1
−
0.050 0.080
V
1
−
0.040 0.060
V
1
−
0.040 0.050
V
1
−
0.030 0.040
V
1
−
0.020 0.030
V
1
−
0.019 0.021
V
1
−
0.018 0.020
V
1
−
0.05
0.2
%/V
1
Load regulation
Output voltage
temperature coefficient*4
Current consumption
during operation
ΔVOUT2
ΔVOUT
ΔTa•VOUT
ISS1
VIN = VOUT(S) + 1.0 V, 1 μA ≤ IOUT ≤ 50 mA
VIN = VOUT(S) + 1.0 V, IOUT = 10 mA,
−40°C ≤ Ta ≤ +85°C
VIN = VOUT(S) + 1.0 V, no load
−
20
40
mV
1
−
±130
− ppm/°C 1
−
0.35 0.53
μA
2
Input voltage
VIN
−
1.5
−
5.5
V
−
Short-circuit current
Ishort
VIN = VOUT(S) + 1.0 V, VOUT = 0 V
−
60
−
mA
3
*1. VOUT(S): Set output voltage
VOUT(E): Actual output voltage
Output voltage when fixing IOUT (= 10 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input
voltage.
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 10 mA.
*4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.
ΔVOUT
ΔTa
[mV/°C]*1 = VOUT(S) [V]*2 ×
ΔVOUT
ΔTa•VOUT
[ppm/°C]*3 ÷ 1000
*1. Change in temperature of output voltage
*2. Set output voltage
*3. Output voltage temperature coefficient
*5. Due to limitation of the power dissipation, this value may not be satisfied. Attention should be paid to the power
dissipation when the output current is large.
This specification is guaranteed by design.
9