English
Language : 

DS90CR285 Datasheet, PDF (15/17 Pages) National Semiconductor (TI) – +3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz
Applications Information (Continued)
number of bypass capacitors, the PLL VCC should receive
the most filtering/bypassing. Next would be the LVDS VCC
pins and finally the logic VCC pins.
FIGURE 19. LVDS Serialized Link Termination
01291024
01291025
FIGURE 20. CHANNEL LINK
Decoupling Configuration
CLOCK JITTER: The CHANNEL LINK devices employ a
PLL to generate and recover the clock transmitted across the
LVDS interface. The width of each bit in the serialized LVDS
data stream is one-seventh the clock period. For example, a
66 MHz clock has a period of 15 ns which results in a data bit
width of 2.16 ns. Differential skew (∆t within one differential
pair), interconnect skew (∆t of one differential pair to an-
other) and clock jitter will all reduce the available window for
sampling the LVDS serial data streams. Care must be taken
to ensure that the clock input to the transmitter be a clean
low noise signal. Individual bypassing of each VCC to ground
will minimize the noise passed on to the PLL, thus creating a
low jitter LVDS clock. These measures provide more margin
for channel-to-channel skew and interconnect skew as a part
of the overall jitter/skew budget.
COMMON MODE vs. DIFFERENTIAL MODE NOISE MAR-
GIN: The typical signal swing for LVDS is 300 mV centered
at +1.2V. The CHANNEL LINK receiver supports a 100 mV
threshold therefore providing approximately 200 mV of dif-
ferential noise margin. Common mode protection is of more
importance to the system’s operation due to the differential
data transmission. LVDS supports an input voltage range of
Ground to +2.4V. This allows for a ±1.0V shifting of the
center point due to ground potential differences and common
mode noise.
POWER SEQUENCING AND POWERDOWN MODE: Out-
puts of the CNANNEL LINK transmitter remain in TRI-
STATE® until the power supply reaches 2V. Clock and data
outputs will begin to toggle 10 ms after VCC has reached 3V
and the Powerdown pin is above 1.5V. Either device may be
placed into a powerdown mode at any time by asserting the
Powerdown pin (active low). Total power dissipation for each
device will decrease to 5 µW (typical).
The CHANNEL LINK chipset is designed to protect itself
from accidental loss of power to either the transmitter or
receiver. If power to the transmit board is lost, the receiver
clocks (input and output) stop. The data outputs (RxOUT)
retain the states they were in when the clocks stopped.
When the receiver board loses power, the receiver inputs are
shorted to V CC through an internal diode. Current is limited
(5 mA per input) by the fixed current mode drivers, thus
avoiding the potential for latchup when powering the device.
15
www.national.com