English
Language : 

MT47H32M16CC3B Datasheet, PDF (40/133 Pages) Micron Technology – 512Mb: x4, x8, x16 DDR2 SDRAM
18. The inputs to the DRAM must be aligned to the associated clock, that is, the actual clock that latches it in. Howev-
er, the input timing (in ns) references to the tCK (AVG) when determining the required number of clocks. The fol-
lowing input parameters are determined by taking the specified percentage times the tCK (AVG) rather than tCK:
tIPW, tDIPW, tDQSS, tDQSH, tDQSL, tDSS, tDSH, tWPST, and tWPRE.
19. The DRAM output timing is aligned to the nominal or average clock. Most output parameters must be derated by
the actual jitter error when input clock jitter is present; this will result in each parameter becoming larger. The
following parameters are required to be derated by subtracting tERR5per (MAX): tAC (MIN), tDQSCK (MIN), tLZDQS
(MIN), tLZDQ (MIN), tAON (MIN); while the following parameters are required to be derated by subtracting
tERR5per (MIN): tAC (MAX), tDQSCK (MAX), tHZ (MAX), tLZDQS (MAX), tLZDQ (MAX), tAON (MAX). The parameter
tRPRE (MIN) is derated by subtracting tJITper (MAX), while tRPRE (MAX), is derated by subtracting tJITper (MIN).
The parameter tRPST (MIN) is derated by subtracting tJITdty (MAX), while tRPST (MAX), is derated by subtracting
tJITdty (MIN). Output timings that require tERR5per derating can be observed to have offsets relative to the clock;
however, the total window will not degrade.
20. When DQS is used single-ended, the minimum limit is reduced by 100ps.
21. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not
referenced to a specific voltage level, but specify when the device output is no longer driving (tHZ) or begins driv-
ing (tLZ).
22. tLZ (MIN) will prevail over a tDQSCK (MIN) + tRPRE (MAX) condition.
23. This is not a device limit. The device will operate with a negative value, but system performance could be degra-
ded due to bus turnaround.
24. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. The case shown (DQS go-
ing from High-Z to logic LOW) applies when no WRITEs were previously in progress on the bus. If a previous
WRITE was in progress, DQS could be HIGH during this time, depending on tDQSS.
25. The intent of the “Don’t Care” state after completion of the postamble is that the DQS-driven signal should either
be HIGH, LOW, or High-Z, and that any signal transition within the input switching region must follow valid input
requirements. That is, if DQS transitions HIGH (above VIH[DC]min), then it must not transition LOW (below VIH[DC])
prior to tDQSH (MIN).
26. Referenced to each output group: x4 = DQS with DQ[3:0]; x8 = DQS with DQ[7:0]; x16 = LDQS with DQ[7:0]; and
UDQS with DQ[15:8].
27. The data valid window is derived by achieving other specifications: tHP (tCK/2), tDQSQ, and tQH (tQH = tHP - tQHS).
The data valid window derates in direct proportion to the clock duty cycle and a practical data valid window can
be derived.
28. tQH = tHP - tQHS; the worst case tQH would be the lesser of tCL (ABS) MAX or tCH (ABS) MAX times tCK (ABS) MIN
- tQHS. Minimizing the amount of tCH (AVG) offset and value of tJITdty will provide a larger tQH, which in turn
will provide a larger valid data out window.
29. This maximum value is derived from the referenced test load. tHZ (MAX) will prevail over tDQSCK (MAX) + tRPST
(MAX) condition.
30. The values listed are for the differential DQS strobe (DQS and DQS#) with a differential slew rate of 2 V/ns (1 V/ns
for each signal). There are two sets of values listed: tDSa, tDHa and tDSb, tDHb. The tDSa, tDHa values (for reference
only) are equivalent to the baseline values of tDSb, tDHb at VREF when the slew rate is 2 V/ns, differentially. The
baseline values, tDSb, tDHb, are the JEDEC-defined values, referenced from the logic trip points. tDSb is referenced
from VIH(AC) for a rising signal and VIL(AC) for a falling signal, while tDHb is referenced from VIL(DC) for a rising sig-
nal and VIH(DC) for a falling signal. If the differential DQS slew rate is not equal to 2 V/ns, then the baseline values
must be derated by adding the values from Table 31 (page 62) and Table 32 (page 63). If the DQS differential
strobe feature is not enabled, then the DQS strobe is single-ended and the baseline values must be derated using