English
Language : 

LTC3788 Datasheet, PDF (24/32 Pages) Linear Technology – 2-Phase, Dual Output Synchronous Boost Controller
LTC3788
APPLICATIONS INFORMATION
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3788 circuits: 1) IC VIN current, 2) INTVCC
regulator current, 3) I2R losses, 4) Bottom MOSFET
transition losses.
1. The VIN current is the DC supply current given in the
Electrical Characteristics table, which excludes MOSFET
driver and control currents. VIN current typically results
in a small (<0.1%) loss.
2. INTVCC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power MOS-
FETs. Each time a MOSFET gate is switched from low to
high to low again, a packet of charge, dQ, moves from
INTVCC to ground. The resulting dQ/dt is a current out
of INTVCC that is typically much larger than the control
circuit current. In continuous mode, IGATECHG = f(QT +
QB), where QT and QB are the gate charges of the topside
and bottom side MOSFETs.
3. DC I2R losses. These arise from the resistances of
the MOSFETs, sensing resistor, inductor and PC board
traces and cause the efficiency to drop at high output
currents.
4. Transition losses apply only to the bottom MOSFET(s),
and become significant only when operating at low input
voltages. Transition losses can be estimated from:
Transition Loss = (1.7)
VOUT 3
VIN
IO(MAX) • CRSS f
Other hidden losses, such as copper trace and internal
battery resistances, can account for an additional 5% to
10% efficiency degradation in portable systems. It is very
important to include these system-level losses during the
design phase.
24
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, VOUT shifts by an
amount equal to ΔILOAD (ESR), where ESR is the effective
series resistance of COUT. ΔILOAD also begins to charge
or discharge COUT generating the feedback error signal
that forces the regulator to adapt to the current change and
return VOUT to its steady-state value. During this recovery
time VOUT can be monitored for excessive overshoot
or ringing, which would indicate a stability problem.
OPTI-LOOP compensation allows the transient response
to be optimized over a wide range of output capacitance
and ESR values. The availability of the ITH pin not only
allows optimization of control loop behavior, but it also
provides a DC coupled and AC filtered closed loop re-
sponse test point. The DC step, rise time and settling at
this test point truly reflects the closed loop response.
Assuming a predominantly second order system, phase
margin and/or damping factor can be estimated using the
percentage of overshoot seen at this pin. The bandwidth
can also be estimated by examining the rise time at the
pin. The ITH external components shown in the Figure 9
circuit will provide an adequate starting point for most
applications.
The ITH series RC-CC filter sets the dominant pole-zero
loop compensation. The values can be modified slightly
(from 0.5 to 2 times their suggested values) to optimize
transient response once the final PC layout is complete
and the particular output capacitor type and value have
been determined. The output capacitors must be selected
because the various types and values determine the loop
gain and phase. An output current pulse of 20% to 80%
of full-load current having a rise time of 1μs to 10μs will
produce output voltage and ITH pin waveforms that will
give a sense of the overall loop stability without breaking
the feedback loop.
Placing a power MOSFET and load resistor directly
across the output capacitor and driving the gate with an
appropriate signal generator is a practical way to produce
a realistic load step condition. The initial output voltage
step resulting from the step change in output current may
3788f