English
Language : 

ISL12026 Datasheet, PDF (12/24 Pages) Intersil Corporation – Real Time Clock/Calendar with EEPROM
ISL12026
DTR Register - DTR2, DTR1, DTR0: Digital
Trimming Register
The digital trimming Bits DTR2, DTR1 and DTR0 adjust the
number of counts per second and average the ppm error to
achieve better accuracy.
DTR2 is a sign bit. DTR2 = 0 means frequency
compensation is > 0. DTR2 = 1 means frequency
compensation is < 0.
DTR1 and DTR0 are scale bits. DTR1 gives 10 ppm
adjustment and DTR0 gives 20 ppm adjustment.
A range from -30ppm to +30ppm can be represented by
using three bits above.
TABLE 5. DIGITAL TRIMMING REGISTERS
DTR REGISTER
DTR2
DTR1
DTR0
ESTIMATED FREQUENCY
PPM
0
0
0
0
0
1
0
+10
0
0
1
+20
0
1
1
+30
1
0
0
0
1
1
0
-10
1
0
1
-20
1
1
1
-30
PWR Register: SBIB, BSW
SBIB: - Serial Bus Interface (Enable)
The serial bus can be disabled in battery backup mode by
setting this bit to “1”. This will minimize power drain on the
battery. The Serial Interface can be enabled in battery
backup mode by setting this bit to “0”. (default is “0”). See
Reset and Power Control section.
BSW: Power Control Bit
The Power Control bit, BSW, determines the conditions for
switching between VDD and Back Up Battery. There are two
options.
Option 1. Standard/Default Mode: Set “BSW = 0”
Option 2. Legacy Mode: Set “BSW = 1”
See Power Control Operation later in this document for more
details. Also see “I2C Communications During Battery
backup and LVR Operation” in the Applications section for
important details.
Device Operation
Writing to the Clock/Control Registers
Changing any of the bits of the clock/control registers
requires the following steps:
1. Write a 02h to the Status Register to set the Write Enable
Latch (WEL). This is a volatile operation, so there is no
delay after the write. (Operation preceded by a start and
ended with a stop).
2. Write a 06h to the Status Register to set both the Register
Write Enable Latch (RWEL) and the WEL bit. This is also
a volatile cycle. The zeros in the data byte are required.
(Operation proceeded by a start and ended with a stop).
Write all eight bytes to the RTC registers, or one byte to the
SR, or one to five bytes to the control registers. This
sequence starts with a start bit, requires a slave byte of
“11011110” and an address within the CCR and is terminated
by a stop bit. A write to the EEPROM registers in the CCR
will initiate a non-volatile write cycle and will take up to 20ms
to complete. A write to the RTC registers (SRAM) will require
much shorter cycle time (t = tBUF). Writes to undefined areas
have no effect. The RWEL bit is reset by the completion of a
write to the CCR, so the sequence must be repeated to
again initiate another change to the CCR contents. If the
sequence is not completed for any reason (by sending an
incorrect number of bits or sending a start instead of a stop,
for example) the RWEL bit is not reset and the device
remains in an active mode. Writing all zeros to the status
register resets both the WEL and RWEL bits. A read
operation occurring between any of the previous operations
will not interrupt the register write operation.
Alarm Operation
Since the alarm works as a comparison between the alarm
registers and the RTC registers, it is ideal for notifying a host
processor of a particular time event and trigger some action
as a result. The host can be notified by either a hardware
interrupt (the IRQ/FOUT pin) or by polling the Status Register
(SR) Alarm bits. These two volatile bits (AL1for Alarm 1 and
AL0 for Alarm 0), indicate if an alarm has happened. The bits
are set on an alarm condition regardless of whether the IRQ/
FOUT interrupt is enabled. The AL1 and AL0 bits in the status
register are reset by the falling edge of the eighth clock of
status register read.
There are two alarm operation modes: Single Event and
periodic Interrupt Mode:
1. Single Event Mode is enabled by setting the AL0E or
AL1E bit to “1”, the IM bit to “0”, and disabling the
frequency output. This mode permits a one-time match
between the alarm registers and the RTC registers. Once
this match occurs, the AL0 or AL1 bit is set to “1” and the
IRQ/FOUT output will be pulled low and will remain low
until the AL0 or AL1 bit is read, which will automatically
resets it. Both Alarm registers can be set at the same time
to trigger alarms. The IRQ/FOUT output will be set by
either alarm, and will need to be cleared to enable
triggering by a subsequent alarm. Polling the SR will
reveal which alarm has been set.
2. Interrupt Mode (or “Pulsed Interrupt Mode” or PIM) is
enabled by setting the AL0E or AL1E bit to “1” the IM bit
to “1”, and disabling the frequency output. If both AL0E
12
FN8231.5
October 23, 2006