English
Language : 

EP1AGX Datasheet, PDF (22/234 Pages) Altera Corporation – Section I. Arria GX Device Data Sheet
2–16
Chapter 2: Arria GX Architecture
Transceivers
Bit-Slip Mode
The word aligner can operate in either pattern detection mode or in bit-slip mode.
The bit-slip mode provides the option to manually shift the word boundary through
the FPGA. This feature is useful for:
■ Longer synchronization patterns than the pattern detector can accommodate
■ Scrambled data stream
■ Input stream consisting of over-sampled data
The word aligner outputs a word boundary as it is received from the analog receiver
after reset. You can examine the word and search its boundary in the FPGA. To do so,
assert the rx_bitslip signal. The rx_bitslip signal should be toggled and held
constant for at least two FPGA clock cycles.
For every rising edge of the rx_bitslip signal, the current word boundary is
slipped by one bit. Every time a bit is slipped, the bit received earliest is lost. If bit
slipping shifts a complete round of bus width, the word boundary is back to the
original boundary.
The rx_syncstatus signal is not available in bit-slipping mode.
Channel Aligner
The channel aligner is available only in XAUI mode and aligns the signals of all four
channels within a transceiver. The channel aligner follows the IEEE 802.3ae, clause 48
specification for channel bonding.
The channel aligner is a 16-word FIFO buffer with a state machine controlling the
channel bonding process. The state machine looks for an /A/ (/K28.3/) in each
channel and aligns all the /A/ code groups in the transceiver. When four columns of
/A/ (denoted by //A//) are detected, the rx_channelaligned signal goes high,
signifying that all the channels in the transceiver have been aligned. The reception of
four consecutive misaligned /A/ code groups restarts the channel alignment
sequence and sends the rx_channelaligned signal low.
Arria GX Device Handbook, Volume 1
© December 2009 Altera Corporation