English
Language : 

LM3S1439_16 Datasheet, PDF (290/699 Pages) Texas Instruments – Stellaris LM3S1439 Microcontroller
General-Purpose Input/Outputs (GPIOs)
8.2.3
8.2.4
8.2.5
conditions that are allowed to be passed to the controller. The GPIORIS register indicates that a
GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.
In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC.
If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not
only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the ADC
Event Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC
conversion is initiated.
If no other PortB pins are being used to generate interrupts, the Interrupt 0-31 Set Enable (EN0)
register can disable the PortB interrupts, and the ADC interrupt can be used to read back the
converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on PB4,
and wait for the ADC interrupt or the ADC interrupt must be disabled in the EN0 register and the
PortB interrupt handler must poll the ADC registers until the conversion is completed. See page 108
for more information.
Interrupts are cleared by writing a 1 to the appropriate bit of the GPIO Interrupt Clear (GPIOICR)
register (see page 303).
When programming the following interrupt control registers, the interrupts should be masked (GPIOIM
set to 0). Writing any value to an interrupt control register (GPIOIS, GPIOIBE, or GPIOIEV) can
generate a spurious interrupt if the corresponding bits are enabled.
Mode Control
The GPIO pins can be controlled by either hardware or software. When hardware control is enabled
via the GPIO Alternate Function Select (GPIOAFSEL) register (see page 304), the pin state is
controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO
mode, where the GPIODATA register is used to read/write the corresponding pins.
Commit Control
The GPIO commit control registers provide a layer of protection against accidental programming of
critical hardware peripherals. Protection is currently provided for the five JTAG/SWD pins (PB7 and
PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register
(see page 304) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see
page 314) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see
page 315) have been set to 1.
Pad Control
The pad control registers allow for GPIO pad configuration by software based on the application
requirements. The pad control registers include the GPIODR2R, GPIODR4R, GPIODR8R, GPIOODR,
GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers. These registers control drive strength,
open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital enable.
For special high-current applications, the GPIO output buffers may be used with the following
restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may
be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is
specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only
a maximum of two per side of the physical package or BGA pin group with the total number of
high-current GPIO outputs not exceeding four for the entire package.
290
July 15, 2014
Texas Instruments-Production Data