English
Language : 

DS64MB201 Datasheet, PDF (24/28 Pages) Texas Instruments – DS64MB201 Dual Lane 2:1/1:2 Mux/Buffer with Equalization and De-Emphasis
Applications Information
GENERAL RECOMMENDATIONS
The DS64MB201 is a high performance circuit capable of de-
livering excellent performance. Careful attention must be paid
to the details associated with high-speed design as well as
providing a clean power supply. Refer to the LVDS Owner's
Manual for more detailed information on high speed design
tips to address signal integrity design issues.
PCB LAYOUT CONSIDERATIONS FOR DIFFERENTIAL
PAIRS
The CML inputs and LPDS outputs must have a controlled
differential impedance of 100Ω. It is preferable to route dif-
ferential lines exclusively on one layer of the board, particu-
larly for the input traces. The use of vias should be avoided if
possible. If vias must be used, they should be used sparingly
and must be placed symmetrically for each side of a given
differential pair. Route the differential signals away from other
signals and noise sources on the printed circuit board. See
AN-1187 for additional information on LLP packages.
POWER SUPPLY BYPASSING
Two approaches are recommended to ensure that the
DS64MB201 is provided with an adequate power supply.
First, the supply (VDD) and ground (GND) pins should be
connected to power planes routed on adjacent layers of the
printed circuit board. The layer thickness of the dielectric
should be minimized so that the VDD and GND planes create
a low inductance supply with distributed capacitance. Sec-
ond, careful attention to supply bypassing through the proper
use of bypass capacitors is required. A 0.01 μF bypass ca-
pacitor should be connected to each VDD pin such that the
capacitor is placed as close as possible to the DS64MB201.
Smaller body size capacitors can help facilitate proper com-
ponent placement. Additionally, three capacitors with capac-
itance in the range of 2.2 μF to 10 μF should be incorporated
in the power supply bypassing design as well. These capac-
itors can be either tantalum or an ultra-low ESR ceramic.
23
www.national.com