English
Language : 

BQ34Z653 Datasheet, PDF (2/25 Pages) Texas Instruments – SBS 1.1-Compliant Gas Gauge and Protection Enabled with Impedance Track with External Battery Heater Control and LCD Display
bq34z653
SLUSB53 – JULY 2012
www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
TA
–40°C to 85°C
Table 1. AVAILABLE OPTIONS
PACKAGE (1)
44-PIN TSSOP (DBT) Tube
bq34z653DBT (2)
44-PIN TSSOP (DBT) Tape and Reel
bq34z653DBTR (3)
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
(2) A single tube quantity is 40 units.
(3) A single reel quantity is 2000 units.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
THERMAL INFORMATION
THERMAL METRIC(1)
bq34z653
TSSOP
UNITS
θJA, High K
θJC(top)
θJB
ψJT
ψJB
θJC(bottom)
Junction-to-ambient thermal resistance(2)
Junction-to-case(top) thermal resistance (3)
Junction-to-board thermal resistance (4)
Junction-to-top characterization parameter (5)
Junction-to-board characterization parameter (6)
Junction-to-case(bottom) thermal resistance (7)
44 PINS
60.9
15.3
30.2
0.3
27.2
n/a
°C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as
specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB
temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
2
Submit Documentation Feedback
Product Folder Link(s): bq34z653
Copyright © 2012, Texas Instruments Incorporated