English
Language : 

BQ24616 Datasheet, PDF (18/34 Pages) Texas Instruments – JEITA Guideline Compatible Stand-Alone Synchronous Switch-Mode Li-Ion or Li-Polymer Battery Charger with System Power Selector and Low Iq
bq24616
SLUSA49A – APRIL 2010 – REVISED MAY 2010
www.ti.com
Asymmetrical gate drive (fast turn-off and slow turn-on) for the ACDRV and BATDRV drivers provides fast
turn-off and slow turn-on of the ACFET and BATFET to help the break-before-make logic and to allow a soft-start
at turn-on of either FET. The soft-start time can be further increased, by putting a capacitor from gate to source
of the p-channel power MOSFETs.
Automatic Internal Soft-Start Charger Current
The charger automatically soft-starts the charger regulation current every time the charger goes into fast-charge
to ensure there is no overshoot or stress on the output capacitors or the power converter. The soft-start consists
of stepping-up the charge regulation current into 8 evenly divided steps up to the programmed charge current.
Each step lasts around 1.6ms, for a typical rise time of 12.8ms. No external components are needed for this
function.
Converter Operation
The synchronous buck PWM converter uses a fixed frequency voltage mode with feed-forward control scheme. A
type III compensation network allows using ceramic capacitors at the output of the converter. The compensation
input stage is connected internally between the feedback output (FBO) and the error amplifier input (EAI). The
feedback compensation stage is connected between the error amplifier input (EAI) and error amplifier output
(EAO). The LC output filter is selected to give a resonant frequency of 12kHz–17kHz for bq24616, where
resonant frequency, fo, is given by:
1
fo =
2p Lo Co
(7)
An internal saw-tooth ramp is compared to the internal EAO error control signal to vary the duty-cycle of the
converter. The ramp height is 7% of the input adapter voltage making it always directly proportional to the input
adapter voltage. This cancels out any loop gain variation due to a change in input voltage, and simplifies the loop
compensation. The ramp is offset by 300mV in order to allow zero percent duty-cycle when the EAO signal is
below the ramp. The EAO signal is also allowed to exceed the saw-tooth ramp signal in order to get a 100%
duty-cycle PWM request. Internal gate drive logic allows achieving 99.5% duty-cycle while ensuring the
N-channel upper device always has enough voltage to stay fully on. If the BTST pin to PH pin voltage falls below
4.2V for more than 3 cycles, then the high-side n-channel power MOSFET is turned off and the low-side
n-channel power MOSFET is turned on to pull the PH node down and recharge the BTST capacitor. Then the
high-side driver returns to 100% duty-cycle operation until the (BTST-PH) voltage is detected to fall low again
due to leakage current discharging the BTST capacitor below the 4.2 V, and the reset pulse is reissued.
The fixed frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage,
battery voltage, charge current, and temperature, simplifying output filter design and keeping it out of the audible
noise region. Also see Application Information for how to select inductor, capacitor and MOSFET.
Synchronous and Non-Synchronous Operation
The charger operates in synchronous mode when the SRP-SRN voltage is above 5mV (0.5A inductor current for
a 10mΩ sense resistor). During synchronous mode, the internal gate drive logic ensures there is
break-before-make complimentary switching to prevent shoot-through currents. During the 30ns dead time where
both FETs are off, the body-diode of the low-side power MOSFET conducts the inductor current. Having the
low-side FET turn-on keeps the power dissipation low, and allows safely charging at high currents. During
synchronous mode the inductor current is always flowing and converter operates in continuous conduction mode
(CCM), creating a fixed two-pole system.
The charger operates in non-synchronous mode when the SRP-SRN voltage is below 5mV (0.5A inductor
current for a 10mΩ sense resistor). The charger is forced into non-synchronous mode when battery voltage is
lower than 2V or when the average SRP-SRN voltage is lower than 1.25mV.
During non-synchronous operation, the body-diode of lower-side MOSFET can conduct the positive inductor
current after the high-side n-channel power MOSFET turns off. When the load current decreases and the
inductor current drops to zero, the body diode will be naturally turned off and the inductor current will become
discontinuous. This mode is called Discontinuous Conduction Mode (DCM). During DCM, the low-side n-channel
power MOSFET will turn-on for around 80ns when the bootstrap capacitor voltage drops below 4.2V, then the
low-side power MOSFET will turn-off and stay off until the beginning of the next cycle, where the high-side power
MOSFET is turned on again. The 80ns low-side MOSFET on-time is required to ensure the bootstrap capacitor is
18
Submit Documentation Feedback
Product Folder Link(s): bq24616
Copyright © 2010, Texas Instruments Incorporated