English
Language : 

S-8211DAD-M5T1X Datasheet, PDF (12/38 Pages) Seiko Instruments Inc – BATTERY PROTECTION IC
BATTERY PROTECTION IC FOR 1-CELL PACK
S-8211D Series
Rev.6.5_02
 Test Circuits
Caution Unless otherwise specified, the output voltage levels "H" and "L" at the CO pin (VCO) and the DO pin
(VDO) are judged by the threshold voltage (1.0 V) of the N-channel FET. Judge the CO pin level with
respect to VVM and the DO pin level with respect to VSS.
1. Overcharge detection voltage, overcharge release voltage
(Test condition 1, test circuit 1)
Overcharge detection voltage (VCU) is defined as the voltage between the VDD pin and the VSS pin at which VCO goes
from "H" to "L" when the voltage V1 is gradually increased from the starting condition of V1 = 3.5 V. Overcharge
release voltage (VCL) is defined as the voltage between the VDD pin and the VSS pin at which VCO goes from "L" to
"H" when the voltage V1 is then gradually decreased. Overcharge hysteresis voltage (VHC) is defined as the difference
between overcharge detection voltage (VCU) and overcharge release voltage (VCL).
2. Overdischarge detection voltage, overdischarge release voltage
(Test condition 2, test circuit 2)
Overdischarge detection voltage (VDL) is defined as the voltage between the VDD pin and the VSS pin at which VDO
goes from "H" to "L" when the voltage V1 is gradually decreased from the starting condition of V1 = 3.5 V, V2 = 0 V.
Overdischarge release voltage (VDU) is defined as the voltage between the VDD pin and the VSS pin at which VDO
goes from "L" to "H" when the voltage V1 is then gradually increased. Overdischarge hysteresis voltage (VHD) is
defined as the difference between overdischarge release voltage (VDU) and overdischarge detection voltage (VDL).
3. Discharge overcurrent detection voltage
(Test condition 3, test circuit 2)
Discharge overcurrent detection voltage (VDIOV) is defined as the voltage between the VM pin and the VSS pin whose
delay time for changing VDO from "H" to "L" lies between the minimum and the maximum value of discharge
overcurrent delay time when the voltage V2 is increased rapidly (within 10 μs) from the starting condition of V1 = 3.5 V,
V2 = 0 V.
4. Load short-circuiting detection voltage
(Test condition 3, test circuit 2)
Load short-circuiting detection voltage (VSHORT) is defined as the voltage between the VM pin and the VSS pin whose
delay time for changing VDO from "H" to "L" lies between the minimum and the maximum value of load short-circuiting
delay time when the voltage V2 is increased rapidly (within 10 μs) from the starting condition of V1 = 3.5 V, V2 = 0 V.
5. Current consumption during operation
(Test condition 4, test circuit 2)
The current consumption during operation (IOPE) is the current that flows through the VDD pin (IDD) under the set
conditions of V1 = 3.5 V and V2 = 0 V (normal status).
6. Charger detection voltage (= abnormal charge current detection voltage)
(Test condition 4, test circuit 2)
The charger detection voltage (VCHA) is the voltage between the VM pin and the VSS pin; when gradually increasing
V1 at V1 = 1.8 V, V2 = 0 V to set V1 = VDL + (VHD/2), after that, decreasing V2 gradually from 0 V so that VDO goes "L"
to "H".
Measurement of the charger detection voltage is available for the product with overdischarge hysteresis VHD ≠ 0 only.
The abnormal charge current detection voltage is the voltage between the VM pin and the VSS pin; when gradually
decreasing V2 at V1 = 3.5 V, V2 = 0 V and VCO goes "H" to "L".
The value of the abnormal charge current detection voltage is equal to the charger detection voltage (VCHA).
12