English
Language : 

SDA5649 Datasheet, PDF (5/26 Pages) Siemens Semiconductor Group – Expanded Decoder for Program Delivery Control and Video Program System EPDC / VPS Decoder
SDA 5649
SDA 5649X
Circuit Description
Referring to the functional block diagram of the PDC / VPS decoder, the composite video signal with
negative going sync pulses is coupled to the pin CVBS through a capacitor which is used for
clamping the bottom of the sync pulses to an internally fixed level. The signal is passed on to the
slicer, an analogue circuitry separating the sync and the data parts of the CVBS signal, thus yielding
the digital composite sync signal VCS and a digital data signal for further processing by comparing
those signals to internally generated slicing levels.
The output of the sync separator is forwarded, on one hand, to the output pin VCS, and on the other
hand, to the clock generator and the Timing block. The VCS signal represents a key signal that is
used for deriving a system clock signal by means of a PLL and all other timing signal.
The output of the sync separator is forwarded, on one hand, to the output pin VCS, and on the other
hand, to the clock generator and the Timing block. The VCS signal represents a key signal that is
used for deriving a system clock signal by means of a PLL and all other timing signal.
The data slicer separates the data signal from the CVBS signal by comparing the video voltage to
an internally generated slicing level which is found by averaging the data signal during TV line no.
16 in the VPS mode or by averaging the data signal during the clock run-in period of the teletext
lines during the data entry window (DEW) in PDC mode.
The clock generator delivers the system clock needed for the basic timing as well as for the
regeneration of the dataclock. It is based on two phase locked loops (PLL’s) all parts of which are
integrated on chip with the exception of the loop filter components. Each of the PLL’s is composed
of a voltage controlled relaxation oscillator (VCO), a phase/frequency detector (PFD), and a charge
pump which converts the digital output signals of the PFD to an analogue current. That current is
transformed to a control voltage for the VCO by the off-chip loop filter. The generated VCO
frequencies are 10 MHz and 13.875 MHz for VPS mode and PDC mode, respectively.
All signals necessary for the control of sync and data slicing as well as for the data acquisition are
generated by the Timing block.
Depending on the selected operating mode, either teletext lines carrying 8/30 packages or the
dedicated TV line no. 16 are acquired.
In PDC mode, only teletext rows 8/30 containing Broadcast Data Service Package (BDSP)
information are acquired. The relevant bytes of 8/30 format 1 (8/30/1) and 8/30 format 2 (8/30/2) are
extracted. The 8/30/1-bytes are stored in the acquisition register in a transparent way without any
bit manipulation, whereas the Hamming coded bytes of packet 8/30/2 are Hamming-checked and
bytes with one bit error are corrected. The storage of error free or corrected 8/30/2-data bytes in the
transfer register to the I2C-Bus is signalled by the DAVN output going low.
In VPS mode, the extracted data bits of TV line no. 16 are checked for biphase errors. With no
biphase errors encountered, the acquired bytes are stored in the transfer register to the I2C-Bus.
That transfer is signalled by a H/L transition of the DAVN output, as well.
In both operating modes data are updated when a new data line has been received, provided that
the chip is not accessed via the I2C-Bus at the same time.
A micro controller can read the stored bytes via the I2C-Bus interface at any time. However, one
must be aware that the storage of new data from the acquisition interface is inhibited as long as the
PDC decoder is being accessed via the I2C-Bus.
Semiconductor Group
48