English
Language : 

DS90UR907Q_10 Datasheet, PDF (23/26 Pages) National Semiconductor (TI) – 5 - 65 MHz 24-bit Color FPD-Link to FPD-Link II Converter
PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS
Circuit board layout and stack-up for the LVDS devices should
be designed to provide low-noise power feed to the device.
Good layout practice will also separate high frequency or
high-level inputs and outputs to minimize unwanted stray
noise pickup, feedback and interference. Power system per-
formance may be greatly improved by using thin dielectrics (2
to 4 mils) for power / ground sandwiches. This arrangement
provides plane capacitance for the PCB power system with
low-inductance parasitics, which has proven especially effec-
tive at high frequencies, and makes the value and placement
of external bypass capacitors less critical. External bypass
capacitors should include both RF ceramic and tantalum elec-
trolytic types. RF capacitors may use values in the range of
0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF
to 10 uF range. Voltage rating of the tantalum capacitors
should be at least 5X the power supply voltage being used.
Surface mount capacitors are recommended due to their
smaller parasitics. When using multiple capacitors per supply
pin, locate the smaller value closer to the pin. A large bulk
capacitor is recommend at the point of power entry. This is
typically in the 50uF to 100uF range and will smooth low fre-
quency switching noise. It is recommended to connect power
and ground pins directly to the power and ground planes with
bypass capacitors connected to the plane with via on both
ends of the capacitor. Connecting power or ground pins to an
external bypass capacitor will increase the inductance of the
path.
A small body size X7R chip capacitor, such as 0603, is rec-
ommended for external bypass. Its small body size reduces
the parasitic inductance of the capacitor. The user must pay
attention to the resonance frequency of these external bypass
capacitors, usually in the range of 20-30 MHz. To provide ef-
fective bypassing, multiple capacitors are often used to
achieve low impedance between the supply rails over the fre-
quency of interest. At high frequency, it is also a common
practice to use two vias from power and ground pins to the
planes, reducing the impedance at high frequency.
Some devices provide separate power and ground pins for
different portions of the circuit. This is done to isolate switch-
ing noise effects between different sections of the circuit.
Separate planes on the PCB are typically not required. Pin
Description tables typically provide guidance on which circuit
blocks are connected to which power pin pairs. In some cas-
es, an external filter many be used to provide clean power to
sensitive circuits such as PLLs.
Use at least a four layer board with a power and ground plane.
Locate LVCMOS signals away from the LVDS lines to prevent
coupling from the LVCMOS lines to the LVDS lines. Closely-
coupled differential lines of 100 Ohms are typically recom-
mended for LVDS interconnect. The closely coupled lines
help to ensure that coupled noise will appear as common-
mode and thus is rejected by the receivers. The tightly cou-
pled lines will also radiate less.
Information on the LLP style package is provided in National
Application Note: AN-1187.
LVDS INTERCONNECT GUIDELINES
See AN-1108 and AN-905 for full details.
• Use 100Ω coupled differential pairs
• Use the S/2S/3S rule in spacings
– S = space between the pair
– 2S = space between pairs
– 3S = space to LVCMOS signal
• Minimize the number of Vias
• Use differential connectors when operating above
500Mbps line speed
• Maintain balance of the traces
• Minimize skew within the pair
• Terminate as close to the TX outputs and RX inputs as
possible
Additional general guidance can be found in the LVDS
Owner’s Manual - available in PDF format from the National
web site at: www.national.com/lvds
23
www.national.com