English
Language : 

LTC3859_15 Datasheet, PDF (27/42 Pages) Linear Technology – Low IQ, Triple Output, Buck/Buck/Boost Synchronous Controller
LTC3859
APPLICATIONS INFORMATION
To prevent the maximum junction temperature from being
exceeded, the input supply current must be checked while
operating in continuous conduction mode (PLLIN/MODE
= INTVCC) at maximum VIN.
When the voltage applied to EXTVCC rises above 4.7V, the
VBIAS LDO is turned off and the EXTVCC LDO is enabled.
The EXTVCC LDO remains on as long as the voltage applied
to EXTVCC remains above 4.5V. The EXTVCC LDO attempts
to regulate the INTVCC voltage to 5.4V, so while EXTVCC
is less than 5.4V, the LDO is in dropout and the INTVCC
voltage is approximately equal to EXTVCC. When EXTVCC
is greater than 5.4V, up to an absolute maximum of 14V,
INTVCC is regulated to 5.4V.
Using the EXTVCC LDO allows the MOSFET driver and
control power to be derived from one of the LTC3859’s
switching regulator outputs (4.7V ≤ VOUT ≤ 14V) dur-
ing normal operation and from the VBIAS LDO when the
output is out of regulation (e.g., startup, short-circuit). If
more current is required through the EXTVCC LDO than
is specified, an external Schottky diode can be added
between the EXTVCC and INTVCC pins. In this case, do
not apply more than 6V to the EXTVCC pin and make sure
than EXTVCC ≤ VBIAS.
Significant efficiency and thermal gains can be realized
by powering INTVCC from the buck output, since the VIN
current resulting from the driver and control currents will
be scaled by a factor of (Duty Cycle)/(Switcher Efficiency).
For 5V to 14V regulator outputs, this means connecting
the EXTVCC pin directly to VOUT. Tying the EXTVCC pin to
a 8.5V supply reduces the junction temperature in the
previous example from 125°C to:
TJ = 70°C + (40mA)(8.5V)(34°C/W) = 82°C
However, for 3.3V and other low voltage outputs, addi-
tional circuitry is required to derive INTVCC power from
the output.
The following list summarizes the four possible connec-
tions for EXTVCC:
1. EXTVCC left open (or grounded). This will cause INTVCC
to be powered from the internal 5.4V regulator result-
ing in an efficiency penalty of up to 10% at high input
voltages.
2. EXTVCC connected directly to the output voltage of one
of the buck regulators. This is the normal connection
for a 5V to 14V regulator and provides the highest ef-
ficiency.
3. EXTVCC connected to an external supply. If an external
supply is available in the 5V to 14V range, it may be
used to power EXTVCC providing it is compatible with the
MOSFET gate drive requirements. Ensure that EXTVCC
< VIN.
4. EXTVCC connected to an output-derived boost network
off one of the buck regulators. For 3.3V and other low
voltage buck regulators, efficiency gains can still be
realized by connecting EXTVCC to an output-derived
voltage that has been boosted to greater than 4.7V. This
can be done with the capacitive charge pump shown in
Figure 9. Ensure that EXTVCC < VIN.
LTC3859
VIN1,2
C1
BAT85
BAT85
MTOP
TG
EXTVCC
SW
MBOT
BG
L
RSENSE
BAT85
VOUT1,2
PGND
3859 F09
Figure 9. Capacitive Charge Pump for EXTVCC
Topside MOSFET Driver Supply (CB, DB)
External bootstrap capacitors CB connected to the BOOST
pins supply the gate drive voltages for the topside MOSFETs.
Capacitor CB in the Functional Diagram is charged though
external diode DB from INTVCC when the SW pin is low.
When one of the topside MOSFETs is to be turned on, the
driver places the CB voltage across the gate-source of the
desired MOSFET. This enhances the MOSFET and turns
on the topside switch. The switch node voltage, SW, rises
to VIN for the buck channels (VOUT for the boost channel)
and the BOOST pin follows. With the topside MOSFET
3859fa
27