English
Language : 

LTC3568_15 Datasheet, PDF (12/18 Pages) Linear Technology – 1.8A, 4MHz, Synchronous Step-Down DC/DC Converter
LTC3568
Applications Information
that will give a sense of the overall loop stability without
breaking the feedback loop.
Switching regulators take several cycles to respond to a
step in load current. When a load step occurs, VOUT im-
mediately shifts by an amount equal to ΔILOAD • ESR, where
ESR is the effective series resistance of COUT. ΔILOAD also
begins to charge or discharge COUT generating a feedback
error signal used by the regulator to return VOUT to its
steady-state value. During this recovery time, VOUT can
be monitored for overshoot or ringing that would indicate
a stability problem.
The initial output voltage step may not be within the
bandwidth of the feedback loop, so the standard second
order overshoot/DC ratio cannot be used to determine
phase margin. The gain of the loop increases with R and
the bandwidth of the loop increases with decreasing C.
If R is increased by the same factor that C is decreased,
the zero frequency will be kept the same, thereby keeping
the phase the same in the most critical frequency range
of the feedback loop. In addition, a feedforward capacitor
CF can be added to improve the high frequency response,
as shown in Figure 5. Capacitor CF provides phase lead by
creating a high frequency zero with R2 which improves
the phase margin.
The output voltage settling behavior is related to the stability
of the closed-loop system and will demonstrate the actual
overall supply performance. For a detailed explanation of
optimizing the compensation components, including a
review of control loop theory, refer to Linear Technology
Application Note 76.
Although a buck regulator is capable of providing the full
output current in dropout, it should be noted that as the
input voltage VIN drops toward VOUT, the load step capability
does decrease due to the decreasing voltage across the
inductor. Applications that require large load step capabil-
ity near dropout should use a different topology such as
SEPIC, Zeta or single inductor, positive buck/boost.
In some applications, a more severe transient can be caused
by switching in loads with large (>1uF) input capacitors.
The discharged input capacitors are effectively put in paral-
lel with COUT, causing a rapid drop in VOUT. No regulator
can deliver enough current to prevent this problem, if the
switch connecting the load has low resistance and is driven
quickly. The solution is to limit the turn-on speed of the load
switch driver. A hot swap controller is designed specifically
for this purpose and usually incorporates current limiting,
short-circuit protection, and soft-starting.
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of
12
VIN
2.5V
TO 5.5V
C6
PGND
+
CIN
R6
C8
PGND
SVIN
PVIN PGOOD
SW
LTC3568
SGND
SYNC/MODE
ITH
VFB
SGND
CITH
RC
SGND PGND SHDN/RT
CC
R5
PGOOD
L1 CF
R1
R2
RT
SGND SGND
GND
SGND SGND
Figure 5. LTC3568 General Schematic
+
COUT
VOUT
C5
PGND
PGND
3568 F05
3568fa