English
Language : 

LTC3720_15 Datasheet, PDF (10/24 Pages) Linear Technology – Single Phase VRM8.5 Current Mode Step-Down Controller
LTC3720
APPLICATIO S I FOR ATIO
The basic LTC3720 application circuit is shown in
Figure 1. External component selection is primarily de-
termined by the maximum load current and begins with
the selection of the sense resistance and power MOSFET
switches. The LTC3720 can use either a sense resistor or
the on-resistance of the synchronous power MOSFET for
determining the inductor current. The desired amount of
ripple current and operating frequency largely deter-
mines the inductor value. Finally, CIN is selected for its
ability to handle the large RMS current into the converter
and COUT is chosen with low enough ESR to meet the
output voltage ripple and transient specification.
Maximum Sense Voltage and VRNG Pin
Inductor current is determined by measuring the voltage
acrossasenseresistancethatappearsbetweenthe SENSE–
and SENSE+ pins. The maximum sense voltage is set by
the voltage applied to the VRNG pin and is equal to
approximately (0.133)VRNG. The current mode control
loop will not allow the inductor current valleys to exceed
(0.133)VRNG/RSENSE. In practice, one should allow some
margin for variations in the LTC3720 and external compo-
nent values and a good guide for selecting the sense
resistance is:
RSENSE
=
10
VRNG
• IOUT(MAX)
An external resistive divider from INTVCC can be used to
set the voltage of the VRNG pin between 0.5V and 2V
resulting in nominal sense voltages of 50mV to 200mV.
Additionally, the VRNG pin can be tied to SGND or INTVCC
in which case the nominal sense voltage defaults to 70mV
or 140mV, respectively. The maximum allowed sense
voltage is about 1.33 times this nominal value.
Connecting the SENSE+ and SENSE– Pins
The LTC3720 can be used with or without a sense resistor.
When using a sense resistor, it is placed between the
source of the bottom MOSFET M2 and ground. Connect
the SENSE+ pin to the source of the bottom MOSFET and
the SENSE– pin to PGND so that the resistor appears
between the SENSE+ and SENSE– pins. Kelvin connec-
tions at the sense resistor ensure accurate current sens-
ing. Using a sense resistor provides a well defined current
limit, but adds cost and reduces efficiency. Alternatively,
one can eliminate the sense resistor and use the bottom
MOSFET as the current sense element by simply connect-
ing the SENSE+ pin to the switch node SW at the drain of
the bottom MOSFET and keep SENSE– connected to
PGND. This improves efficiency, but one must carefully
choose the MOSFET on-resistance as discussed below.
Power MOSFET Selection
The LTC3720 requires two external N-channel power
MOSFETs, one for the top (main) switch and one for the
bottom (synchronous) switch. Important parameters for
the power MOSFETs are the breakdown voltage V(BR)DSS,
threshold voltage V(GS)TH, on-resistance RDS(ON), reverse
transfer capacitance CRSS and maximum current IDS(MAX).
The gate drive voltage is set by the 5V INTVCC supply.
Consequently, logic-level threshold MOSFETs must be
used in LTC3720 applications. If the input voltage is
expected to drop below 5V, then sub-logic level threshold
MOSFETs should be considered.
When the bottom MOSFET is used as the current sense
element, particular attention must be paid to its on-
resistance. MOSFET on-resistance is typically specified
with a maximum value RDS(ON)(MAX) at 25°C. In this case,
additional margin is required to accommodate the rise in
MOSFET on-resistance with temperature:
RDS(ON)(MAX)
=
RSENSE
ρT
The ρT term is a normalization factor (unity at 25°C)
accounting for the significant variation in on-resistance
with temperature, typically about 0.4%/°C as shown in
Figure 2. For a maximum temperature of 100°C, using a
value ρT = 1.3 is reasonable.
The power dissipated by the top and bottom MOSFETs
strongly depends upon their respective duty cycles and
3720f
10