English
Language : 

ISL6440A Datasheet, PDF (6/16 Pages) Intersil Corporation – Advanced PWM and Triple Linear Power Controller for Gateway Applications
ISL6440A
Functional Pin Descriptions
VCC (Pin 28)
Provide a 12V bias supply for the IC to this pin. This pin also
provides the gate bias charge for all the MOSFETs
controlled by the IC. The voltage at this pin is monitored for
power-on reset (POR) purposes.
GND (Pin 17)
Signal ground for the IC. All voltage levels are measured
with respect to this pin.
PGND (Pin 24)
This is the power ground connection. Tie the synchronous
PWM converter’s lower MOSFET source to this pin.
VAUX (Pin 16)
This pin provides boost current for the linear regulators’
output drives in the event bipolar NPN transistors (instead
of N-Channel MOSFETs) are employed as pass elements.
The voltage at this pin is monitored for POR purposes.
SS (Pin 12)
Connect a capacitor from this pin to ground. This capacitor,
along with an internal 28µA current source, sets the soft-start
interval of the converter.
FAULT / RT (Pin 13)
This pin provides oscillator switching frequency adjustment.
By placing a resistor (RT) from this pin to GND, the nominal
200kHz switching frequency is increased according to the
following equation:
Fs ≈ 200k Hz + R-5----T-×---(--1k---0-Ω---6--)
(RT to GND)
Conversely, connecting a resistor from this pin to VCC
reduces the switching frequency according to the following
equation:
Fs ≈ 200k Hz – R-4----T-×---(--1k---0-Ω---7--)
(RT to 12V)
Nominally, the voltage at this pin is 1.26V. In the event of an
overvoltage or overcurrent condition, this pin is internally
pulled to VCC.
PGOOD (Pin 8)
PGOOD is an open collector output used to indicate the
status of the output voltages. This pin is pulled low when the
synchronous regulator output is not within ±10% of the
DACOUT reference voltage or when any of the other outputs
are below their undervoltage thresholds.
The PGOOD output is open for ‘11111’ VID code.
SD (Pin 9)
This pin shuts down all the outputs. A TTL-compatible, logic
level high signal applied at this pin immediately discharges
the soft-start capacitor, disabling all the outputs. Dedicated
internal circuitry insures the core output voltage does not go
negative during this process. When re-enabled, the IC
undergoes a new soft-start cycle. Left open, this pin is pulled
low by an internal pull-down resistor, enabling operation.
FIX (Pin 2)
Grounding this pin bypasses the internal resistor dividers
that set the output voltage of the 1.5V and 1.8V linear
regulators. This way, the output voltage of the two regulators
can be adjusted from 1.26V up to the input voltage (+3.3V or
+5V) by way of an external resistor divider connected at the
corresponding VSEN pin. The new output voltage set by the
external resistor divider can be determined using the
following formula:
VOUT
=
1.265 V
×



1
+
R-R----GO-----NU----DT--
where ROUT is the resistor connected from VSEN to the
output of the regulator, and RGND is the resistor connected
from VSEN to ground. Left open, the FIX pin is pulled high,
enabling fixed output voltage operation.
VID0, VID1, VID2, VID3, VID4 (Pins 7, 6, 5, 4 and 3)
VID0-4 are the TTL-compatible input pins to the 5-bit DAC.
The logic states of these five pins program the internal
voltage reference (DACOUT). The level of DACOUT sets the
microprocessor core converter output voltage, as well as the
corresponding PGOOD and OVP thresholds.
OCSET (Pin 23)
Connect a resistor from this pin to the drain of the respective
upper MOSFET. This resistor, an internal 200µA current
source, and the upper MOSFET’s on-resistance set the
converter overcurrent trip point. An overcurrent trip cycles
the soft-start function.
The voltage at this pin is monitored for POR purposes and
pulling this pin low with an open drain device will shutdown
the IC.
PHASE (Pin 26)
Connect the PHASE pin to the PWM converter’s upper
MOSFET source. This pin represents the gate drive return
current path and is used to monitor the voltage drop across
the upper MOSFET for overcurrent protection.
UGATE (Pin 27)
Connect UGATE pin to the PWM converter’s upper
MOSFET gate. This pin provides the gate drive for the upper
MOSFET.
LGATE (Pin 25)
Connect LGATE to the PWM converter’s lower MOSFET
gate. This pin provides the gate drive for the lower MOSFET.
COMP and FB (Pin 20 and 21)
COMP and FB are the available external pins of the PWM
converter error amplifier. The FB pin is the inverting input of the
6